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Boolean Satisfiability Problem (SAT)

■ Propositional logic
■ Conjunctive Normal Form (CNF): F = C1 ∧ C2 ∧ . . . ∧ Cm

(a ∨ ¬b) ∧
(a ∨ b ∨ c) ∧
(¬a ∨ ¬b)

■ NP-complete decision problem: Is this formula satisfiable?
■ Answer: Yes, consider for example:

{a = ⊤, b = ⊥, c = ⊥}
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SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .
■ Important features:

□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions
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Verifiable Certificates – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution: Satisfying truth assignment.
■ Proof of UNSAT: Record of all added (and deleted) clauses.

□ Derivation of the empty clause.
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Example Input and Proof Formats

DIMACS

1 p cnf 4 8

2 1 2 -3 0

3 -1 -2 3 0

4 2 3 -4 0

5 -2 -3 4 0

6 -1 -3 -4 0

7 1 3 4 0

8 -1 2 4 0

9 1 -2 -4 0

DRUP [HeuleHW’14]

1 -3 -4 0

2 d -3 -1 -4 0

3 3 -4 0

4 d 2 3 -4 0

5 -4 0

6 3 0

7 -2 0

8 1 0

9 0

LRAT [CruzFHHKS-CADE’17]

1 9 -3 -4 0 5 1 8 0

2 9 d 5 0

3 10 3 -4 0 3 2 8 0

4 10 d 3 0

5 11 -4 0 9 10 0

6 12 3 0 11 6 7 2 0

7 13 -2 0 12 11 4 0

8 14 1 0 13 12 1 0

9 15 0 13 14 11 7 0
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Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?
Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?
Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .
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Verifiable Results of Incremental SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ P = ⟨Q1, Q2, Q3⟩

■ Solution of satisfiable queries:
□ Satisfying truth assignment that agrees with assumptions.

■ Proofs of unsatisfiable queries:

□ without assumptions: Derivation of the empty clause.
□ with assumptions: Not defined.
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Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF LIDRUP

■ New LIDRUP proof format:
□ Explicitly reasons about failed assumptions
□ Supports incremental inprocessing operations
□ Contains hints to speed up checking
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LIDRUP Example

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0
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LIDRUP Example (cont.)

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0
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8 f 1 2 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0
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LIDRUP Example (cont.)

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

7 s UNSATISFIABLE

8 f 1 2 0

9 i -1 2 0

10 i 1 -2 0

11 q 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0

12 i 8 -1 2 0

13 i 9 1 -2 0

14 q 0

15 s SATISFIABLE

16 m -1 -2 -3 -4 0
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LIDRUP Example (cont.)

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

7 s UNSATISFIABLE

8 f 1 2 0

9 i -1 2 0

10 i 1 -2 0

11 q 0

12 s SATISFIABLE

13 v -1 -2 -3 -4 0

14 i 1 2 0

15 q 0

16 s UNSATISFIABLE

17 f 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0

12 i 8 -1 2 0

13 i 9 1 -2 0

14 q 0

15 s SATISFIABLE

16 m -1 -2 -3 -4 0

17 i 10 1 2 0

18 q 0

19 l 11 2 0 8 10 0

20 l 12 -1 0 11 6 0

21 l 13 0 12 11 9 0

22 s UNSATISFIABLE

23 u 0 13 0
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Syntax of LIDRUP

12/21



Semantics of LIDRUP

■ σ: partial function that captures clause IDs

■ A,P: Active and Passive sets of clauses
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LIDRUP-CHECK – Checking Incremental Proofs
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Experiments (1): Bounded Model Checking

CaMiCaL CaDiCaL

LIDRUP-CHECK

SAT

interactions

ICNF
LIDRUP
proof

AIGER
problem

Success
or Error

■ Input: 300 AIGER models of Hardware Model Checking Competition 2017
□ 300 Incremental SAT Problems

■ Maximum bound: 1000
□ Each query consists of at most 1000 unsatisfiable queries with assumptions
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BMC Results – CaDiCaL
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BMC Results – Checking vs. Solving times

■ Reasonable proof checking time

■ Hints provide significant speed up in checking
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Experiments (2): Satisfiability Modulo Theories

CaDiCaL
CVC5-

IPASIRUP

LIDRUP-CHECK

SAT

interactions

LIDRUP

proof

SMT
problem

Success
or Error

■ Input: Non-Incremental and Incremental QF_LRA benchmarks of SMT-LIB
□ 1754 + 10 = 1764 Incremental SAT problems
□ 1754 + 1515 = 3269 SAT queries
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LIDRUP-CHECK – Checking Incremental Proofs without Input
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SMT Results: CVC5-IPASIRUP with CaDiCaL

Benchmark
All Solved wo. Proof Solved & Verified

Instances Queries Instances Queries Instances Queries

QF_LRA 1754 1754 1671 1671 1650 1650
incr-QF_LRA 10 1515 2 730 2 725
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Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of Incremental SAT-based Tools
→ Speed up proof checking via incrementality

■ LIDRUP-CHECK: First prototype to check LIDRUP proofs
□ Incremental (online) proof checker
□ Works with and without input formula ICNF input

■ Future Work:
□ Backward proof checking, trimming
□ Verify proof checker
□ Other proof formats (e.g. veriPB)

Thank you!
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