
Certifying Incremental SAT Solving

International Conference on Logic for Programming,
Artificial Intelligence and Reasoning

May 27, 2024

Katalin Fazekas1, Florian Pollitt2, Mathias Fleury2, and Armin Biere2

1TU Wien, Vienna, Austria
2Albert–Ludwigs–University, Freiburg, Germany



Outline

Preliminaries

Certifying Incremental SAT Solving

Main Contributions



Boolean Satisfiability Problem (SAT)

■ Propositional logic
■ Conjunctive Normal Form (CNF): F = C1 ∧ C2 ∧ . . . ∧ Cm

(a ∨ ¬b) ∧
(a ∨ b ∨ c) ∧
(¬a ∨ ¬b)

■ NP-complete decision problem: Is this formula satisfiable?
■ Answer: Yes, consider for example:

{a = ⊤, b = ⊥, c = ⊥}

1/21



Boolean Satisfiability Problem (SAT)

■ Propositional logic
■ Conjunctive Normal Form (CNF): F = C1 ∧ C2 ∧ . . . ∧ Cm

(a ∨ ¬b) ∧
(a ∨ b ∨ c) ∧
(¬a ∨ ¬b)

■ NP-complete decision problem: Is this formula satisfiable?
■ Answer: Yes, consider for example:

{a = ⊤, b = ⊥, c = ⊥}

1/21



Boolean Satisfiability Problem (SAT)

■ Propositional logic
■ Conjunctive Normal Form (CNF): F = C1 ∧ C2 ∧ . . . ∧ Cm

(a ∨ ¬b) ∧
(a ∨ b ∨ c) ∧
(¬a ∨ ¬b)

■ NP-complete decision problem: Is this formula satisfiable?

■ Answer: Yes, consider for example:

{a = ⊤, b = ⊥, c = ⊥}

1/21



Boolean Satisfiability Problem (SAT)

■ Propositional logic
■ Conjunctive Normal Form (CNF): F = C1 ∧ C2 ∧ . . . ∧ Cm

(a ∨ ¬b) ∧
(a ∨ b ∨ c) ∧
(¬a ∨ ¬b)

■ NP-complete decision problem: Is this formula satisfiable?
■ Answer: Yes, consider for example:

{a = ⊤, b = ⊥, c = ⊥}

1/21



Boolean Satisfiability Problem (SAT)

■ Propositional logic
■ Conjunctive Normal Form (CNF): F = C1 ∧ C2 ∧ . . . ∧ Cm

(a ∨ ¬b) ∧
(a ∨ b ∨ c) ∧
(¬a ∨ ¬b)

■ NP-complete decision problem: Is this formula satisfiable?
■ Answer: Yes, consider for example:

{a = ⊤, b = ⊥, c = ⊥}

1/21



SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .
■ Important features:

□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions

2/21



SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .
■ Important features:

□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions

2/21



SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .
■ Important features:

□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions

2/21



SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .
■ Important features:

□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions

2/21



SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .

■ Important features:
□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions

2/21



SAT Solvers

SAT
Solver

SAT or UNSAT
answer

■ Main approach: Conflict-Driven Clause-Learning (CDCL) algorithm

■ Can scale to millions of variables and clauses

■ Wide range of applications: verification, AI, solvers beyond SAT, planning . . .
■ Important features:

□ Inprocessing: Efficient formula simplification techniques
□ Verifiable result: Proofs & Solutions

2/21



Verifiable Certificates – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution: Satisfying truth assignment.
■ Proof of UNSAT: Record of all added (and deleted) clauses.

□ Derivation of the empty clause.

3/21



Verifiable Certificates – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution: Satisfying truth assignment.

■ Proof of UNSAT: Record of all added (and deleted) clauses.
□ Derivation of the empty clause.

3/21



Verifiable Certificates – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution: Satisfying truth assignment.
■ Proof of UNSAT: Record of all added (and deleted) clauses.

□ Derivation of the empty clause.

3/21



Example Input and Proof Formats

DIMACS

1 p cnf 4 8

2 1 2 -3 0

3 -1 -2 3 0

4 2 3 -4 0

5 -2 -3 4 0

6 -1 -3 -4 0

7 1 3 4 0

8 -1 2 4 0

9 1 -2 -4 0

DRUP [HeuleHW’14]

1 -3 -4 0

2 d -3 -1 -4 0

3 3 -4 0

4 d 2 3 -4 0

5 -4 0

6 3 0

7 -2 0

8 1 0

9 0

LRAT [CruzFHHKS-CADE’17]

1 9 -3 -4 0 5 1 8 0

2 9 d 5 0

3 10 3 -4 0 3 2 8 0

4 10 d 3 0

5 11 -4 0 9 10 0

6 12 3 0 11 6 7 2 0

7 13 -2 0 12 11 4 0

8 14 1 0 13 12 1 0

9 15 0 13 14 11 7 0

4/21



Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?
Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?
Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .

5/21



Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?
Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?
Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .

5/21



Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?

Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?
Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .

5/21



Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?
Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?

Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .

5/21



Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?
Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?
Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .

5/21



Incremental SAT Problems
■ Sequence of SAT queries: ⟨Q1, Q2, . . . , Qn⟩ where Qi = (∆i, Ai) for 1 ≤ i ≤ n:

□ Set of clauses: ∆i

□ Set of assumptions: Ai (temporary unit clauses)

Qi satisfiable ⇔ (∧i
j=1∆j) ∧Ai satisfiable

■ Example: P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {a, b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ a ∧ b satisfiable?
Q2 = ({C5}, {¬b}) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ ¬b satisfiable?
Q3 = ({C6, C7}, ∅) 7→C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

■ Several applications: Bounded Model Checking, SMT, Planning, . . .

5/21



Outline

Preliminaries

Certifying Incremental SAT Solving

Main Contributions



Verifiable Results of Incremental SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ P = ⟨Q1, Q2, Q3⟩

■ Solution of satisfiable queries:
□ Satisfying truth assignment that agrees with assumptions.

■ Proofs of unsatisfiable queries:

□ without assumptions: Derivation of the empty clause.
□ with assumptions: Not defined.

6/21



Verifiable Results of Incremental SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ P = ⟨Q1, Q2, Q3⟩
■ Solution of satisfiable queries:

□ Satisfying truth assignment that agrees with assumptions.

■ Proofs of unsatisfiable queries:

□ without assumptions: Derivation of the empty clause.
□ with assumptions: Not defined.

6/21



Verifiable Results of Incremental SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ P = ⟨Q1, Q2, Q3⟩
■ Solution of satisfiable queries:

□ Satisfying truth assignment that agrees with assumptions.
■ Proofs of unsatisfiable queries:

□ without assumptions: Derivation of the empty clause.

□ with assumptions: Not defined.

6/21



Verifiable Results of Incremental SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ P = ⟨Q1, Q2, Q3⟩
■ Solution of satisfiable queries:

□ Satisfying truth assignment that agrees with assumptions.
■ Proofs of unsatisfiable queries:

□ without assumptions: Derivation of the empty clause.
□ with assumptions: Not defined.

6/21



Outline

Preliminaries

Certifying Incremental SAT Solving

Main Contributions



Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF LIDRUP

■ New LIDRUP proof format:
□ Explicitly reasons about failed assumptions
□ Supports incremental inprocessing operations
□ Contains hints to speed up checking

7/21



Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF LIDRUP

■ New LIDRUP proof format:
□ Explicitly reasons about failed assumptions
□ Supports incremental inprocessing operations
□ Contains hints to speed up checking

7/21



LIDRUP Example

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0

8/21



LIDRUP Example (cont.)

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

7 s UNSATISFIABLE

8 f 1 2 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0

9/21



LIDRUP Example (cont.)

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

7 s UNSATISFIABLE

8 f 1 2 0

9 i -1 2 0

10 i 1 -2 0

11 q 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0

12 i 8 -1 2 0

13 i 9 1 -2 0

14 q 0

15 s SATISFIABLE

16 m -1 -2 -3 -4 0

10/21



LIDRUP Example (cont.)

1 p icnf

2 i -1 3 4 0

3 i -1 3 -4 0

4 i -2 -3 4 0

5 i -2 -3 -4 0

6 q 1 2 0

7 s UNSATISFIABLE

8 f 1 2 0

9 i -1 2 0

10 i 1 -2 0

11 q 0

12 s SATISFIABLE

13 v -1 -2 -3 -4 0

14 i 1 2 0

15 q 0

16 s UNSATISFIABLE

17 f 0

Incremental

SAT Solver

1 p lidrup

2 i 1 -1 3 4 0

3 i 2 -1 3 -4 0

4 i 3 -2 -3 4 0

5 i 4 -2 -3 -4 0

6 q 1 2 0

7 l 5 -4 -2 -1 0 2 4 0

8 l 6 -2 -1 0 5 1 3 0

9 d 5 0

10 s UNSATISFIABLE

11 u 2 1 0 6 0

12 i 8 -1 2 0

13 i 9 1 -2 0

14 q 0

15 s SATISFIABLE

16 m -1 -2 -3 -4 0

17 i 10 1 2 0

18 q 0

19 l 11 2 0 8 10 0

20 l 12 -1 0 11 6 0

21 l 13 0 12 11 9 0

22 s UNSATISFIABLE

23 u 0 13 0

11/21



Syntax of LIDRUP

12/21



Semantics of LIDRUP

■ σ: partial function that captures clause IDs

■ A,P: Active and Passive sets of clauses

13/21



LIDRUP-CHECK – Checking Incremental Proofs

14/21



Experiments (1): Bounded Model Checking

CaMiCaL CaDiCaL

LIDRUP-CHECK

SAT

interactions

ICNF
LIDRUP
proof

AIGER
problem

Success
or Error

■ Input: 300 AIGER models of Hardware Model Checking Competition 2017
□ 300 Incremental SAT Problems

■ Maximum bound: 1000
□ Each query consists of at most 1000 unsatisfiable queries with assumptions

15/21



BMC Results – CaDiCaL

16/21



BMC Results – Checking vs. Solving times

■ Reasonable proof checking time

■ Hints provide significant speed up in checking

17/21



Experiments (2): Satisfiability Modulo Theories

CaDiCaL
CVC5-

IPASIRUP

LIDRUP-CHECK

SAT

interactions

LIDRUP

proof

SMT
problem

Success
or Error

■ Input: Non-Incremental and Incremental QF_LRA benchmarks of SMT-LIB
□ 1754 + 10 = 1764 Incremental SAT problems
□ 1754 + 1515 = 3269 SAT queries

18/21



LIDRUP-CHECK – Checking Incremental Proofs without Input

19/21



SMT Results: CVC5-IPASIRUP with CaDiCaL

Benchmark
All Solved wo. Proof Solved & Verified

Instances Queries Instances Queries Instances Queries

QF_LRA 1754 1754 1671 1671 1650 1650
incr-QF_LRA 10 1515 2 730 2 725

20/21



Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of Incremental SAT-based Tools
→ Speed up proof checking via incrementality

■ LIDRUP-CHECK: First prototype to check LIDRUP proofs
□ Incremental (online) proof checker
□ Works with and without input formula ICNF input

■ Future Work:
□ Backward proof checking, trimming
□ Verify proof checker
□ Other proof formats (e.g. veriPB)

Thank you!

21/21



Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of Incremental SAT-based Tools
→ Speed up proof checking via incrementality

■ LIDRUP-CHECK: First prototype to check LIDRUP proofs
□ Incremental (online) proof checker
□ Works with and without input formula ICNF input

■ Future Work:
□ Backward proof checking, trimming
□ Verify proof checker
□ Other proof formats (e.g. veriPB)

Thank you!

21/21



Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of Incremental SAT-based Tools
→ Speed up proof checking via incrementality

■ LIDRUP-CHECK: First prototype to check LIDRUP proofs
□ Incremental (online) proof checker
□ Works with and without input formula ICNF input

■ Future Work:
□ Backward proof checking, trimming
□ Verify proof checker
□ Other proof formats (e.g. veriPB)

Thank you!

21/21



Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of Incremental SAT-based Tools
→ Speed up proof checking via incrementality

■ LIDRUP-CHECK: First prototype to check LIDRUP proofs
□ Incremental (online) proof checker
□ Works with and without input formula ICNF input

■ Future Work:
□ Backward proof checking, trimming
□ Verify proof checker
□ Other proof formats (e.g. veriPB)

Thank you!

21/21



Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of Incremental SAT-based Tools
→ Speed up proof checking via incrementality

■ LIDRUP-CHECK: First prototype to check LIDRUP proofs
□ Incremental (online) proof checker
□ Works with and without input formula ICNF input

■ Future Work:
□ Backward proof checking, trimming
□ Verify proof checker
□ Other proof formats (e.g. veriPB)

Thank you!

21/21


	Preliminaries
	Certifying Incremental SAT Solving
	Main Contributions

