
Journal of Artificial Intelligence Research 81 (2024) 989-1017 Submitted 03/2024; published 12/2024

Satisfiability Modulo User Propagators

Katalin Fazekas katalin.fazekas@tuwien.ac.at
TU Wien, Vienna, Austria

Aina Niemetz niemetz@cs.stanford.edu
Mathias Preiner preiner@cs.stanford.edu
Stanford University, Stanford, USA

Markus Kirchweger mk@ac.tuwien.ac.at
Stefan Szeider sz@ac.tuwien.ac.at
TU Wien, Vienna, Austria

Armin Biere biere@cs.uni-freiburg.de

University of Freiburg, Freiburg, Germany

Abstract

Modern SAT solvers are often integrated as sub-reasoning engines into more complex
tools to address problems beyond the Boolean satisfiability problem. Consider, for exam-
ple, solvers for Satisfiability Modulo Theories (SMT), combinatorial optimization, model
enumeration, and model counting. There, the SAT solver can often provide relevant in-
formation beyond the satisfiability answer and the domain knowledge of the embedding
system, such as symmetry properties or theory axioms, may benefit the CDCL search.
However, this knowledge can often not be efficiently represented in clausal form.

This paper proposes a general interface to inspect and influence the internal behaviour
of CDCL SAT solvers. The aim is to capture the essential functionalities that simplify
and improve use cases requiring a more fine-grained interaction with the SAT solver than
provided via the standard IPASIR interface. For our experiments, the state-of-the-art SAT
solver CaDiCaL is extended with the proposed interface and evaluated on two representa-
tive use cases: enumerating graphs within the SAT modulo Symmetries framework (SMS),
and as the main CDCL(T) SAT engine of the SMT solver cvc5.

1. Introduction

Modern SAT solvers are often used as crucial sub-reasoning engines for more complex tools
that address problems beyond the Boolean satisfiability problem. Use cases include Satis-
fiability Modulo Theories (SMT) (Barrett et al., 2021), combinatorial problems (Bacchus
et al., 2021; Zhang, 2021), or model enumeration and counting (Gomes et al., 2021). The
IPASIR interface (Balyo et al., 2016) has enabled the integration of off-the-shelf SAT solvers
as a black box into larger systems. This is typically done to incrementally solve a sequence
of similar propositional sub-problems. Many applications of SAT solvers, however, require
a tighter integration with a more fine-grained interaction of the SAT solver with the rest of
the system. A prominent example is the CDCL(T) framework for SMT solvers (Nieuwen-
huis et al., 2006), where the search of the core SAT solver on the propositional abstraction
of the input problem is guided by theory solvers. Other use cases include MaxSAT solvers,
which benefit from knowing if some literals imply others (Ignatiev et al., 2019), and solvers
for symmetric combinatorial problems, where it is desired to add additional clauses during

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

search (Devriendt et al., 2012). Currently, such use cases require either workarounds on
the user level or non-trivial modifications of the SAT solver. As a result, replacing the
underlying SAT solver is difficult, which hinders the adoption of recent advancements in
SAT solving. Furthermore, non-standard extensions and modifications to the SAT solver
may result in unintended performance issues if not implemented with care.

In this paper, we propose a generic interface able to capture the essential functionalities
necessary to simplify and improve such use cases of SAT solvers. For this purpose, we
extend the IPASIR interface (Balyo et al., 2016) with an interface to facilitate external
propagators, also called user propagators (UP), yielding a new interface called IPASIR-UP.

Our extension allows users (1) to inspect and be notified about changes to the trail during
search, (2) to add clauses to the problem during solving without restarting the search, (3)
to propagate literals directly, based on external knowledge, without explicitly adding reason
clauses (i.e., using delayed on-demand explanation) and to (4) guide the search by overwrit-
ing the internal decision heuristic of the solver based on external knowledge. Implementing
support for such an interface is non-trivial in a state-of-the-art SAT solver, but enables a
wide range of applications to efficiently use the solver without further, application-specific
workarounds and modifications. To advocate our proposed interface, we implemented it in
CaDiCaL (Biere et al., 2020, 2024), a state-of-the-art incremental SAT solver, on top of
its implementation of the IPASIR interface.

Furthermore, we present two representative use cases of this extension of CaDiCaL
in two different application contexts: integrating CaDiCaL via IPASIR-UP as the core
SAT solver into (1) the CDCL-based SAT modulo Symmetries (SMS) framework and (2)
a CDCL(T)-based Satisfiability Modulo Theories (SMT) solver. Our experiments present
evidence that the IPASIR-UP interface provides a rich and concise interface for a modern,
proof-producing, incremental SAT solver with inprocessing in such applications.

This paper extends the recent short tool paper (Fazekas et al., 2023) published at SAT’23
which introduced the IPASIR-UP interface. Based on comments and discussions with nu-
merous developers, particularly developers of SAT, SMT and MaxSAT solvers, and users
of SAT solvers, we have refined and slightly extended the IPASIR-UP interface with new
features such as forgettable external clauses and batched assignment notifications1. Here,
we describe this extended interface and provide some additional details that were not in-
cluded in (Fazekas et al., 2023) due to space constraints: in Section 2.2 we explain some
of the design decisions regarding the notification system of the interface, in Section 2.4 we
present a possible schedule of the IPASIR-UP callbacks, and in a completely new Section 3
we provide additional details on how to combine IPASIR-UP with some of the common
features of modern CDCL SAT solvers. Further, we extended our experimental evaluation
with additional experiments. In the context of SMS, we include an experiment where we
use CaDiCaL to generate all connected, cubic, claw-free graphs up to isomorphism. In the
context of SMT, we additionally evaluate the performance of CaDiCaL as the CDCL(T)
SAT engine of cvc5 on incremental SMT benchmarks.

990

Satisfiability modulo User Propagators

(a) The possible states of SAT solvers according
to the IPASIR interface (see Balyo et al., 2016).

BCP

Decide Solution
Analysis

Learning

Conflict
Analysis

SAT

UNSAT

cb_decide cb_check_found_model

cb_add_external

cb_add_reason
cb_propagate

backtracking

SOLVING

(b) The five additional states within state
Solving according to the IPASIR-UP interface.

Figure 1: IPASIR model and its extension with states and transitions within CDCL solving.

2. An Interface Beyond IPASIR

The IPASIR interface, as introduced in (Balyo et al., 2016), considers four possible states
of a SAT solver (see Figure 1a). Initially, and while the formula is under construction, the
solver is in state UNKNOWN. When function solve() is called, it transitions into state Solving.
From that state, the solver can transition to either SAT or UNSAT (or, on interruption,
back to UNKNOWN). Thus, IPASIR allows multiple calls to solve() while modifying the
formula or querying details of the found solution (resp. refutation) between such calls. It
is, however, not possible to interact with the solver while it is in the Solving state (except
for interruptions, see dashed line in Figure 1a). Our goal is to extend the IPASIR interface
with functions that can provide such interactions, and thereby allow to simplify and improve
several use cases of modern incremental CDCL SAT solvers.

For this purpose, our interface IPASIR-UP refines the IPASIR state Solving, which
implements the main CDCL loop, into five states, as shown in Figure 1b. CDCL combines
unit propagation (BCP) with decisions (Decide) until either a clause becomes falsified by the
current assignment or each variable is assigned a truth value. In the first case, the solver
transitions into state Conflict Analysis, where it captures the reason of the contradiction
as a derived driving clause, which is then learned in state Learning. If the learned clause is
empty, the solver transitions to the UNSAT state. Otherwise, it backtracks to a lower decision
level and unit propagation starts again. In the second case, as soon as a complete assignment
is found, a standard CDCL solver will transition into the state SAT. In the presence of an
external propagator, however, we introduce an artificial state called Solution Analysis as
an intermediate state before transitioning to SAT.

In each of the five states in Figure 1b, IPASIR-UP provides a callback (with prefix “cb ”)
to interact with the external propagator (dashed transitions in Figure 1b, see Section 2.3).
Additionally, the propagator is being notified about changes to the trail (states and solid
transitions highlighted in purple in Figure 1b, see Section 2.2). In the following, we briefly

1. The latest version of our IPASIR-UP implementation in CaDiCaL is available at https://github.com/
arminbiere/cadical.

991

https://github.com/arminbiere/cadical
https://github.com/arminbiere/cadical

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Listing 1: Functions for Configuration and Management (see Section 2.1)

1 // VALID = UNKNOWN | SATISFIED | UNSATISFIED

2 //

3 // require (VALID) -> ensure (VALID)

4 //

5 void connect_external_propagator (ExternalPropagator * propagator);

6

7 // require (VALID) -> ensure (VALID)

8 //

9 void disconnect_external_propagator ();

10

11 // require (VALID_OR_SOLVING) /\ CLEAN(var) -> ensure (VALID_OR_SOLVING)

12 //

13 void add_observed_var (int var);

14

15 // require (VALID) -> ensure (VALID)

16 //

17 void remove_observed_var (int var);

18

19 // require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)

20 //

21 bool is_decision (int observed_var);

22

23 // require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)

24 //

25 void phase (int lit);

26

27 // require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)

28 //

29 void unphase (int lit);

30

31 // require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)

32 //

33 void force_backtrack (size_t new_level);

describe the main purpose of each function. Though we illustrate IPASIR-UP here with
an example implementation in C++ (see Listings 1 and 2), the API is low-level enough to
be supported in C with only minor modifications. The goal of our interface proposal is
to explicitly identify certain possible interactions during the CDCL loop of a SAT solver.
However, the precise timing and exact syntax of this interaction should always depend on
the actual technical details of the SAT solver.

Note that many other (in this context) less relevant steps of the search (e.g., restart,
reduce, and inprocessing) are, for now, ignored in the model of our interface. In Section 3,
we will revisit some of these steps in the presence of an external propagator.

2.1 Configuration and Management

In order to be able to interact with the solver while in the Solving state, a user may
connect and configure an external propagator through IPASIR-UP as follows.

992

Satisfiability modulo User Propagators

Setup. When the solver is not in the Solving state, the user can connect an external
propagator via the function connect external propagator. This propagator may
be disconnected outside of Solving via disconnect external propagator. There
can be at most one external propagator connected to a solver. In practice this is not a
limitation since, conceptually, multiple propagators on the user side can be managed
and abstracted into one propagator facing the SAT solver.

Observed Variables. While an external propagator is connected, at any point in time
(even during Solving), the user can notify the solver that a variable, that might be
even new, is “relevant” by declaring it as an observed variable via add observed var.
When not in state Solving, observed variables can be removed via the function
remove observed var. Note that all IPASIR-UP calls involve observed variables only.

Additional Useful Functions. We propose three additional functions. First, function
phase (as already implemented in some solvers) allows to force a particular phase of
the specified variable when making a decision on that variable. Similarly, unphase
allows the solver to fall back to its own preferred phase. Second, function is decision

can be queried for a given variable to determine if it is currently assigned by a decision.
Third, users can force the SAT solver to backtrack to a certain decision level (only
before a new decision would be made) via force backtrack.

The complete signature of each of these functions is shown in Listing 1. The comments
above the functions indicate the IPASIR state of the SAT solver when the function is
allowed to be called (see Figure 1a for their relations). The union of states UNKNOWN, SAT,
and UNSAT is referred to as VALID states here, while the state VALID OR SOLVING indicates
that the function can be called also while the solver is in the Solving state.

2.2 Inspecting the Trail via Notifications

In order to be able to interfere with the search of a solver, it is important to know in
which state the solver currently is. When it is in a valid state, most of its state is captured
by the sets of redundant and irredundant clauses together with the reconstruction stack
(see, e.g., Järvisalo et al., 2012; Fazekas et al., 2019, for abstract calculi based on such
states). However, our focus here is on the Solving state, which requires more details to
be sufficiently captured. The transition system introduced in (Nieuwenhuis et al., 2006)
describes the Solving state of DPLL and CDCL SAT solvers as a pair of the form M ||F ,
where F is a set of clauses and M is a partial assignment, representing the current trail of
the solver. For proofs and solutions of SAT solving, the changes applied to F are the most
important details. For external propagation, the changes of M must be captured properly.

There are several possible ways how these changes can be captured and communicated
to users. A simple solver could make its trail directly accessible from outside. However, this
would require a standardized way of organizing trails of SAT solvers, which may potentially
disallow the use of a compacted internal representation of variables. Such an optimized
representation is currently utilized in CaDiCaL and Kissat (Biere et al., 2020). Thus,
instead of directly sharing the trail between user and solver, our goal is to hide trail internals
but share enough information about its changes for users to sufficiently maintain relevant
trail information outside of the solver.

993

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Listing 2: A C++ example implementation of functions for inspecting and influencing CDCL

1 class ExternalPropagator {

2 public:

3 bool are_reasons_forgettable;

4

5 virtual ∼ExternalPropagator () { }

6

7 virtual void notify_assignment (const std::vector <int >& lits) {};

8 virtual void notify_new_decision_level () {};

9 virtual void notify_backtrack (size_t new_level) {};

10

11 virtual int cb_decide () { return 0; }

12

13 virtual int cb_propagate () { return 0; }

14 virtual int cb_add_reason_clause_lit (int propagated_lit) {

15 return 0;

16 }

17

18 virtual bool cb_check_found_model (const std::vector <int > & model) {

19 return true;

20 }

21

22 virtual bool cb_has_external_clause (bool & is_forgettable) {

23 return false;

24 }

25 virtual int cb_add_external_clause_lit () { return 0; }

26 };

The simplest view of the trail of a SAT solver is as a stack of literals, where each literal
is assigned either by decision or propagation (Silva & Sakallah, 1999; Eén & Sörensson,
2003a). Whenever a literal is pushed to the trail due to a decision, it starts a new decision
level. Then, based on that trail, unit propagation pushes literals, associated with that level,
to the top of the trail stack. When the solver needs to backtrack or back-jump, it simply
pops the top literals off the stack until it reaches the assignments of the desired decision
level. This data structure (a stack-like trail) can be implemented efficiently and has a clean
interface, where changes can be captured as a sequence of push and pop operations.

The trail of modern SAT solvers, however, may in practice not necessarily behave as a
stack. Allowing both chronological and non-chronological backtracking during search may
result in out-of-order assignments on the trail. On such out-of-order trails, the decision
level of assignments may decrease during search. Even though there are certain invariants
that can be assumed about such trails (Nadel & Ryvchin, 2018; Möhle & Biere, 2019), push
and pop are not the most efficient ways to capture their changes (see, e.g., Nadel, 2022,
where the trail is actually a double linked list). The simplest way to communicate changes
of an out-of-order trail is to leave behind the concept of decision levels and simply let users
know when variables are assigned or unassigned during search.

In several application domains of SAT, e.g., in the context of SMS, such a notification
strategy would suffice. However, one of the most prominent use cases of IPASIR-UP is
the embedding of modern SAT solvers into SMT solvers. In the context of the CDCL(T)

994

Satisfiability modulo User Propagators

solving framework for SMT, the trail actually determines a conjunction of theory literals
and is viewed as a stack-like trail, which is manipulated by specialized theory solvers via
push and pop operations. To support also those use cases that require a stack-like view of
the trail, IPASIR-UP provides the following three notification functions (see Listing 2 for
their example C++ signatures):

notify new decision level The call of this function indicates to the user that on the trail
a new decision level has started. The function does not report the actual decision that
started this new level or the current decision level — it only reports that a decision
happened and thus, the decision level is increased.

notify assignment This function is called when observed variables are assigned (either by
BCP, Decide, or Learning a unit clause). It has a single read-only argument containing
literals that became satisfied by the new assignment. In case the notification reports
more than one literal, it is guaranteed that all of the reported literals were assigned
on the same (current) decision level.

notify backtrack This function indicates that the solver backtracked to a lower decision
level. Its single argument reports the new decision level. All assignments that were
made above this target decision level must be considered as unassigned.

Expressing assignments and unassignments as a stack-like view can be challenging when
the SAT solver employs several techniques leading to out-of-order assignments (see for
example Coutelier, 2023). This challenge should thus be addressed by the developers of
SAT solvers, who are aware of the details of the supported techniques, rather than the
(usually unaware) users of the SAT solvers (see Section 3.5 for more details).

Developers of SAT solvers must also decide when to schedule the calls of these notifica-
tion functions. It is acceptable to delay notifications as much as possible, e.g., to only notify
the user about assignments after unit propagation has finished. It may also be necessary
to not send notifications while the user is not allowed to interfere anyway (e.g., during pre-
processing). However, it must be guaranteed that the user has a correct view of the current
assignments whenever any of the callback functions of Section 2.3 are called.

2.3 Influencing CDCL via Callbacks

In Section 2.2, we focused on notifying the user about the changes to the trail of the SAT
solver. Based on this information, in each of the five states of the search, IPASIR-UP
allows the user to influence CDCL in various ways via the following callback functions (see
Listing 2 for their example C++ function signatures).

Decide. Before the solver makes a decision, the callback cb decide allows the user to
enforce a user-specific choice of a selected variable and phase. Note that users can
inject decisions only after all assumptions are satisfied.

This is also the state where users can enforce the solver to backtrack via the function
force backtrack. If this function is called at any other time, or if it leads to an
invalid decision level, the query will be ignored by the solver. In the future, we plan
to define a unified error code system that can be used to notify users when such errors

995

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

occur while using the propagator interface. When backtracking to a level where not
all assumptions are yet satisfied, the solver will first make its own decisions based
on the unassigned assumptions before allowing the user to interfere with the internal
decision heuristics again.

BCP. During unit propagation, the user can provide additional literals to be propagated
through the cb propagate callback. Note that this callback returns only a literal to
be propagated. The propagating clause is not required at this point.

Conflict Analysis. If during conflict analysis a previous user propagation (see above)
turns out to be relevant (i.e., necessary to derive the learnt clause), the solver asks for
the corresponding reason clause via cb add reason clause lit, one literal at a time.
The motivation for such delayed lazy explanation (see Nieuwenhuis et al., 2006; Gent
et al., 2010) during conflict analysis is to generate and learn only useful clauses.

Solution Analysis. If the solver determines a full assignment without falsifying any
present clauses (i.e., a SAT solution is found), cb check found model is called. This
function tells the solver if the SAT model is consistent with external user constraints.
In case of inconsistency, additional clauses and variables can be added to the problem
without restarting the search (see below).

Learning. When the solver has finished BCP (right before Decide), or callback cb check-

found model returned false, users can add new clauses to the problem. Callback
cb has external clause indicates if a new clause is to be added. A new clause is then
added via cb add external clause lit, literal by literal. For proof generation, by
default, the solver adds these clauses as irredundant original input clauses. However,
in incremental SAT proofs this addition happens during derivation, not before, and
so incremental proof checking can ignore them until that point (see Fazekas et al.,
2024b, and Section 3.6 for more details on it). In case the user sets the argument
“is forgettable” to true, the solver is allowed to delete the clause later (see Section 3.1).
If the learned clause propagates (resp. is falsified) under the current trail, the solver
transitions to BCP (resp. Conflict Analysis). When no more clauses are to be added,
the solver continues the search.

2.4 An Example CDCL Flow with IPASIR-UP Callbacks

This section presents an example of a possible order of IPASIR-UP callbacks within the
CDCL loop of a SAT solver. For the sake of keeping the presentation simple, we omit
many implementation details and corner cases. Note that this example illustrates only
one possible schedule of calls. The focus here is on showcasing the organization of the
interactions with an external propagator on a possible order of calls. A complete example
of an implementation can be found in the source code of CaDiCaL (Biere et al., 2024).

Algorithm 1 shows a simplified CDCL loop extended with calls to an external propagator
via the IPASIR-UP functions. The SAT search always applies its own Boolean Constraint
Propagation (BCP) function (propagate) first. If this leads to a conflict, it must be resolved
and the solver must backtrack. These conflict handling and backtracking steps are captured
by the call to analyze conflict in Algorithm 1. In case a conflict cannot be resolved,

996

Satisfiability modulo User Propagators

Algorithm 1: CDCL loop with a connected external propagator (simplified).

Data: Solver trail τ , set of all variables V .
Result: 10 if formula is satisfiable, 20 if unsatisfiable.
res← 0;
while res = 0 do

if propagate() ̸= ok then
res← analyze conflict();

else if external propagate() ̸= ok then
res← analyze conflict();

else if add external clauses() ̸= ok then
res← analyze conflict();

else if |τ | = |V | then
if external check solution() ̸= ok then

res← analyze conflict();
else if |τ | = |V | then

res← 10;

else
external decide();

return res;

analyze conflict will return 20 (unsat) and the CDCL loop will terminate. If there is
nothing to propagate by BCP, the solver asks the external propagator if there is anything the
user wants to propagate (see Algorithm 2 below for details). If the external propagator has
nothing to propagate, the solver asks if there is an external clause to add (via Algorithm 3).
In case of no propagations and no external clauses to consider, the SAT solver checks if
there are any unassigned variables left. If not, a complete truth assignment has been found
without falsifying any of the present clauses, thus the trail is a solution. At this point, the
external propagator must be asked to approve this solution. If the propagator indicates a
conflict or introduces new variables while checking the solution, the search must continue.
Otherwise, the solver returns with a satisfying assignment. If none of the above applies, the
solver must make a decision (see Algorithm 4).

Algorithm 2 shows the main steps of handling the external propagation of a literal l. If
the literal is already falsified, the solver must start a conflict analysis. Details of the corre-
sponding conflict analysis are omitted here, but note that any relevant unexplained propa-
gation step must be explained during this analysis via function cb add reason clause lit.
If the literal is already satisfied, the solver can ignore this propagation. If the literal is not
yet assigned, the solver can assign it as an unexplained external propagation step and call
BCP again. After that, once the user is notified of the new assignments, they can propagate
more literals using the function cb external propagate. It is important to note here that
external propagation happens literal-by-literal and not batch-wise, because in that way the
user immediately sees when one of the propagations causes a conflict in the SAT solver.

Algorithm 3 shows the main steps of handling an external clause addition during the
CDCL loop. First, the propagator must be notified of new assignments. Then, users can

997

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Algorithm 2: External propagation within a CDCL SAT solver (simplified).

Function external propagate()
Data: Trail τ , literal l, l ∈ τ indicates that l is assigned true under τ .
notify assignments();
l← cb external propagate();
while l ̸= 0 do

switch l do
case ¬l ∈ τ :

// literal is already falsified

return conflict
case l ∈ τ :

// literal is already satisfied

skip;

otherwise do
// literal is yet unassigned

τ ← τ ∪ {l} // add assignment to the trail

if propagate() ̸= ok then
return conflict ;

notify assignments();
l← cb external propagate();

return ok

Algorithm 3: Addition of external clauses during the CDCL loop (simplified).

Function add external clauses()
notify assignments ();
has clause, is forgettable ← cb has external clause();
while has clause do

C ← get external clause();
switch C do

case root-satisfied(C):
skip;

case falsified(C):
return conflict ;

otherwise do
if propagate() ̸= ok then

return conflict ;

notify assignments();
has clause, is forgettable ← cb has external clause();

return ok

indicate via function cb has external clause whether there is an external (potentially
forgettable) clause to add. If there is such a clause, it is read into C literal by literal (in
the same way as IPASIR allows clauses to be added). If clause C is satisfied by some fixed

998

Satisfiability modulo User Propagators

assignments, it can be ignored. If it is falsified by the current trail, conflict analysis must
start. Otherwise, the solver must call BCP to check for conflicts. External clause addition
ends when either a given clause is falsified or the user has no more clauses to add.

Algorithm 4 shows in a simplified way how cb decide can be intertwined with the
internal decision process of a SAT solver. It is important to note that no external decision
is allowed to take place as long as there are unassigned assumptions of the current SAT
query. If all assumptions are already satisfied by the current trail, the solver can ask the
external propagator for a decision literal (after notifying about the current state of the
trail). If the propagator has nothing to decide, or if the given literal is already assigned, the
solver can fall back on its own decision heuristic (function decide in Algorithm 4). Once a
decision is made, regardless of the source of the decision, the propagator must be notified
of the start of the new decision level by calling notify new decision level.

Algorithm 4: Decision making with the external propagator (simplified).

Function external decide()
Data: The current set of assumptions A, with A \ τ the yet not satisfied subset.
if ∃a ∈ A \ τ : then

// First all assumptions must be satisfied

l← a;

else
// Ask external propagator for a decision

notify assignments();
l← cb decide(); // Returns 0 when no external decision was made

if l = 0 ∨ l ∈ τ ∨ ¬l ∈ τ then
// Ignore external decision if literal is already assigned

l← decide();

notify new decision level();
τ ← τ ∪ l;
notify assignments();

3. Combining External Propagation with Features of SAT Solvers

In our SAT paper, we presented a proof-of-concept implementation of our interface that
provides all the basic functionalities outlined above. Making external propagation compat-
ible with all of the complex features of modern SAT solvers is challenging, but many of
the common techniques can be supported relatively easily. In this section, we provide our
insights, ideas and some open questions on how to combine IPASIR-UP with some of these
common CDCL SAT features.

3.1 Clause Database Reduction

One of the distinguishing features of CDCL SAT solvers, compared to DPLL, is the use
of clause learning upon conflict analysis (Silva & Sakallah, 1996). Such learned clauses
are redundant, since they are derived from the original input problem by resolution. Thus,

999

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

neither learning nor removing these clauses will change the satisfiability of the problem (but
may make solving easier). However, allowing learned clauses to accumulate indefinitely can
slow down the search process. To avoid this, solvers periodically delete a subset of these
redundant clauses. In contrast, the user-provided input clauses define the actual problem.
Consequently, they are not allowed to be deleted unless they are implied (e.g., subsumed)
by other input clauses. Thus, input (also called irredundant) and learned (also called
redundant) clauses are distinguished and treated differently in the SAT solver.

When clauses are added via the external propagator during solving, the SAT solver does
not know whether they should be considered as learned or input clauses—they could either
be user-provided irredundant clauses or clauses learned by an external reasoning engine
(e.g., a theory solver in SMT). Assuming that the external propagator is consistent and
remains connected until the problem is solved, the SAT solver may be allowed to delete
redundant clauses since the external propagator can always derive them again if necessary.
However, if it is more expensive to repeatedly derive a clause than to remember it, it is
undesirable to delete it. In most situations, only the user can determine whether this is
the case, and thus IPASIR-UP allows to specify whether an external clause should be kept
or may be forgotten (see parameter is forgettable of cb has external clause and the
Boolean flag are reasons forgettable in Listing 2).

Forgettable external clauses are considered for deletion, just like the internal redundant
clauses. Non-forgettable clauses are removed only if they are redundant w.r.t. the conjunc-
tion of the input and non-forgettable external clauses (like the internal irredundant clauses).
However, it depends on the heuristics of the SAT solver’s clause database management when
exactly a forgettable clause is deleted. Currently, users cannot force clause deletion or get
notified when certain external clauses are deleted. It remains future work to investigate
whether there are use cases where these steps would be beneficial.

3.2 Finding Fixed Assignments

Depending on the use case, it can often be beneficial for users to know when an assignment
made by the SAT solver will never change in the future (i.e., the assignment is fixed). This
allows users to perform further optimizations to simplify their own constraints and problem
representation based on these fixed assignments.

To support such use cases, our first proposed version of IPASIR-UP classified explicitly
each assignment made by the SAT solver as either fixed or non-fixed. However, this forced
users to care about fixed assignments, even in applications where it added no value. There-
fore, we refined our design such that the current notification feature of IPASIR-UP simply
reports (un-)assignments, without an explicit flag indicating fixed variables assignments.

However, for those users who are interested in fixed assignments, we have introduced
an alternative interface class (called FixedAssignmentListener in CaDiCaL) that eagerly
sends notifications when any of the variables are fixed. Since this feature may be useful
even in use cases where no external propagator is required, its class is independent from
the propagator, and thus does not restrict notifications to those variables that are relevant
to the external propagator. Supporting this interface is therefore completely optional, and
users and developers can decide if it is worth the development effort for their use case.

1000

Satisfiability modulo User Propagators

3.3 Inprocessing and Solution Reconstruction

Our interface IPASIR-UP enables a more fine-grained way of incremental SAT solving,
where new clauses may be added not only between two solve calls, but also during solv-
ing. Ways to combine inprocessing with incremental clause addition was proposed, e.g.,
by (Fazekas et al., 2019) and (Nadel et al., 2012). However, both techniques assumed that
many clauses are added all at once between each solve call.

It is not hard to see that the RestoreAddClauses method of (Fazekas et al., 2019) can
be used during solving, using the same tainting and cleanness check as in (Fazekas et al.,
2019). This allows the solver to recognize when a clause added by the external propagator
triggers the undoing of some of the previous clause elimination steps. In such cases, the
restored clauses can be added along with the external clause. Note that traversing the entire
reconstruction stack each time the external propagator provides clauses may be too costly.
It remains intriguing future work to address this technical challenge.

However, there is another issue with combining inprocessing SAT solving with an ex-
ternal propagator. Some of the clause elimination techniques used in inprocessing (such as
blocked clause elimination) only preserve satisfiability, while potentially introducing addi-
tional models to the problem. These techniques require an extra solution reconstruction
step once a satisfying solution to the simplified formula is found. This step, however, not
only extends the found solution with further assignments (e.g., by assigning a value to the
completely eliminated variables) but may also change the truth value of some variables that
were assigned previously. The variables that have been flipped may be on any decision level
in the trail. Since the external propagator has a stack-like view on this trail (see Sect. 2.2),
users cannot unassign and reassign them without backtracking to their corresponding level.

Further investigation is required to evaluate the practical overhead of these flips during
solution reconstruction. Currently, we assume that observed variables are internally frozen,
and whenever a variable is added via add observed var, it is clean w.r.t. the reconstruction
stack. This ensures that no restore step is necessary when external clauses are added and
no variable assignments are flipped in found solutions.

3.4 Decision Heuristics

The IPASIR-UP interface enables users to influence the decision heuristics of SAT solvers.
Users can suggest a decision via the cb decide callback function, which will then be exe-
cuted instead of the solver’s own decision. Further, the phase and unphase functions allow
the user to share additional knowledge about variables with the solver. Note, however,
that overwriting the decision heuristics of a SAT solver carries a high risk of ruining its
performance. Nevertheless, there are use cases, e.g. when the solver is used as a simple unit
propagation engine, where these functionalities are very helpful.

However, information flow in the opposite direction is currently unavailable. Currently,
there is no standardized method for users to access the score or order of variables in the
solver. Standardizing access to this information with low overhead remains an open problem
that may warrant further investigation in the future.

1001

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

3.5 The Lack of Backtracking

Backtracking is a standard feature of CDCL SAT solvers that modifies their trail. In certain
situations, such as when a conflict arises or a restart is scheduled, backtracking is expected.
If an external propagator is connected, it should be notified of a backtracking event to
maintain an up-to-date view of the current trail (see Section 2.2). However, some of the
new features of SAT solvers make these interactions with the propagator more complex.

As previously mentioned, assignments that are out of order (e.g., due to chronological
backtracking, see Section 2.2) or that are changed later (e.g., due to solution reconstruction,
see Section 3.3) require additional attention to ensure proper notification while maintaining
a stack-like external view of the trail. The simplest solution is to report a backtrack to the
lowest decision level where a change occurred and re-notify every decision level starting from
there. This allows the SAT solver to maintain its behaviour while the external propagator
rebuilds its stack-like trail with the changes. Alternatively, the trail can be used as a stack
within the SAT solver. For instance, out-of-order assignments can be reassigned after each
backtrack as long as the backtracked level is higher than their actual assignment level.

Techniques such as incremental lazy backtracking (ILB) (Nadel, 2022) and trail reuse
(van der Tak et al., 2011) aim to prevent repeated work by identifying when parts of the
trail can be reused from the previous search. If a prefix of the previous trail is reused, it
can be easily communicated to the propagator by backtracking to the last kept decision
level. Otherwise, the previously described dedicated stack-like notification of the changes
must be implemented.

Generally, users do not need to be aware of the incremental techniques used by a SAT
solver to use them correctly. However, when an external propagator is connected, some in-
sights can be helpful. For instance, users may clean up their propagator between two solve
calls, while the solver may not necessarily restart the search due to ILB. Such uncommu-
nicated expectations are error-prone and can lead to time-consuming debugging. Insightful
users can also determine when it is not beneficial to use some techniques. The necessary
backtrack and reassign steps of the stack-like view can be costly for the user. Therefore, it
is important to weigh the benefits of these incremental techniques on the SAT side against
the costs on the external propagator’s side.

3.6 Proof Production

The certification of the returned answers is essential for SAT solvers that are used in safety-
critical systems or as a sub-reasoning engine in tools of formal methods. This feature is sup-
ported by every modern SAT solver in non-incremental stand-alone applications. However,
in incremental use cases, the current standard proof generation and checking techniques
may not suffice (Kiesl-Reiter & Whalen, 2023). For example, during incremental inprocess-
ing there is a distinction between ‘deleting’ or ‘weakening’ a clause (Fazekas et al., 2019),
which cannot be expressed in the current standard proof formats of SAT solvers. In our
recent works (Fazekas et al., 2024c, 2024b) we proposed systematic approaches that support
efficient certification and checking of incremental inprocessing SAT solving. Moreover, we
proposed ICNF (Fazekas et al., 2024c), an extension of DIMACS, to capture interactions
and incremental SAT queries in a single file. These novel interaction files and proof formats

1002

Satisfiability modulo User Propagators

can capture clause addition steps of the user propagator during the CDCL loop as well.
Therefore, certifying and verifying the use cases of IPASIR-UP is relatively simple.

However, there may be complications due to the difference of forgettable and proposi-
tionally redundant clauses in the presence of an external propagator (see Sect. 3.1). If a user
defines a clause as forgettable and a solver decides to delete it, it will appear in the proof
as a normal deletion step of a redundant clause. Current proof checkers for SAT solvers do
not verify the correctness of such clause deletion steps since they cannot turn a satisfiable
problem into an unsatisfiable one. Therefore, the current checking techniques allow for such
deletion steps, even if the removed clause is not necessarily redundant in propositional logic.
However, other proof systems, such as veriPB (Bogaerts et al., 2022), may wish to verify
clause deletion steps as well. In these cases, it will be necessary to distinguish between
externally forgettable clauses and real redundant ones in the produced proofs.

4. Related Work

The primary objective of incremental reasoning is to reuse previously learned information
when solving similar problems. Incremental SAT solvers have a long history (Hooker, 1993;
Kim et al., 2000; Whittemore et al., 2001; Eén & Sörensson, 2003a, 2003b) with numerous
improvements in the last decade (see e.g., Kupferschmid et al., 2011; Nadel & Ryvchin,
2012; Nadel et al., 2012; Audemard et al., 2013; Nadel et al., 2014; Hickey & Bacchus,
2019). IPASIR (Balyo et al., 2016) is a universal C interface for incremental SAT solvers,
allowing easy integration of incremental SAT solvers into applications, without the need to
specialize in a specific SAT solver. IPASIR-UP extends IPASIR for use cases that require
more fine-grained interaction between the application and the SAT solver during solving.
Not only does it provide the user with more comprehensive access to information about the
solver state during solving, but it also allows the user to influence and guide the solver’s
behaviour based on user-level information that is not available to the SAT solver.

The proposed interface standardises functionality that is already used by various ap-
plications. The CDCL(T) framework (Nieuwenhuis et al., 2006) for SMT solvers is an
important use case of interacting with the SAT solver as described above. Current state-of-
the-art SMT solvers, such as cvc5 (Barbosa et al., 2022), Z3 (de Moura & Bjørner, 2008),
MathSat (Cimatti et al., 2013), OpenSMT (Bruttomesso et al., 2010), and veriT (Bouton
et al., 2009) all implement a custom interaction layer with the SAT solver (see, e.g., the
SAT worker interface described in Cimatti et al., 2013). Recently, in the context of SMT,
(Bjørner et al., 2023) introduced an interface to seamlessly integrate theory solvers into Z3.
This enables extending the solving capabilities of Z3 beyond its default features (Eisenhofer
et al., 2023). However, it does not facilitate the replacement of the internal SAT solver.

The desire to combine SAT solving with external reasoning engines is not new. The
Lynx SAT solver already provided a programmatic callback interface a decade ago (Ganesh
et al., 2012). It allowed users to add new clauses, based on the current partial solution,
during the search. Following that work, the programmatic SAT schema was exploited many
more times, for example in MathCheck (Zulkoski et al., 2016; Bright et al., 2016), or later
in other methods that combine SAT with computer algebra systems (see e.g. Bright et al.,
2019, 2020, 2020, 2021). The work in (Gebser et al., 2014) combined SAT solving with
a propagator for acyclicity. Another extended SAT solver was implemented in (Erez &

1003

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Nadel, 2015), where users could interact with the solver to combine and guide the search
with graph-aware reasoning. A more recent tool, the IntelSAT solver (Nadel, 2022),
implements efficient clause addition at arbitrary decision levels, while using reimplication
to guarantee that no implications are missed at lower decision levels. However, none of
these tools support lazy propagation explanation, or stack-like notifications.

The state-of-the-art ASP solver clingo (Gebser et al., 2016) provides a generic interface
to augment the tool with theory propagators. It extends the CDCL loop at four locations,
with notifications and the ability to add clauses during the search and upon checking the
found model. It does not, however, support lazy propagation explanation (i.e, cb propagate

with delayed clause addition) nor proof generation.

5. Empirical Evaluation

To show that our interface is effective and efficient in varied use cases, we extendedCaDiCaL
(Biere et al., 2020, 2024), a state-of-the-art incremental SAT solver which implements the
IPASIR interface, with IPASIR-UP. Our extension required ∼800 lines of C++ code in
CaDiCaL, accompanied with another ∼700 lines in its model based tester. We provide an
evaluation on two representative use cases: enumerating graphs with certain properties via
SAT Modulo Symmetries (Kirchweger & Szeider, 2021), and integrating CaDiCaL as the
main CDCL(T) SAT engine in the SMT solver cvc5 (Barbosa et al., 2022). All evaluated
tools of our experiments are available at Zenodo (Fazekas et al., 2024a).

5.1 Experiments with SMS

SAT modulo Symmetries (SMS) (Kirchweger & Szeider, 2021, 2024) is a recently introduced
SAT-based framework for the exhaustive generation of graphs with a given property while
excluding isomorphic copies of the same object (isomorph-free). The framework was ex-
tended to matroids (Kirchweger et al., 2022), hypergraphs (Kirchweger et al., 2023b), planar
graphs (Kirchweger et al., 2023) and was utilized for improving the known lower-bound on
a smallest Kochen-Specker vector system (Kirchweger et al., 2023a) and for computing uni-
versal graphs (Zhang & Szeider, 2023). In contrast to a generate-and-test approach, which
quickly becomes infeasible due to the extremely fast-growing number of candidate objects,
SMS directly generates isomorph-free objects with the desired property. At its core, SMS
runs a CDCL solver on a propositional formula that encodes the desired property using
object variables.

For instance, if the object is a graph, the graph property is expressed using variables
eu,v for each vertex pair u, v indicating existence of an edge between u and v. Isomorphic
copies are avoided by guiding the solver to generate canonical objects, e.g., by requiring the
adjacency matrix to be lexicographically minimal. There is no known complete symmetry
breaking which isn’t exponential in the number of clauses, even if other canonical forms than
being lexicographically minimal are used (Codish et al., 2016; Itzhakov & Codish, 2020;
Heule, 2019). Hence SMS delegates the minimality check to an external algorithm invoked
whenever the SAT solver decides on an object variable. SMS can perform the minimality
check even when many object variables are undecided. This check tests if a minimal object
is consistent with the current partial truth assignment. A symmetry-breaking clause is sent
back to the CDCL solver if the check fails.

1004

Satisfiability modulo User Propagators

CaDiCaL+IPASIR-UP [s] Clingo [s]

n #graphs default enum-IPASIR no-inpro forgettable no-prop clingo-red clingo-irred

A
ll

g
ra

p
h
s 6 156 0.01 0.01 0.01 0.01 0.01 0.01 0.01

7 1044 0.06 0.08 0.05 0.05 0.05 0.06 0.05
8 12346 0.52 0.78 0.53 0.55 0.52 0.63 0.63
9 274668 13.73 23.76 13.86 14.93 14.06 51.36 47.85

10 12005168 3916.74 3102.31 3260.63 3758.26 3702.24 165697.81 150790.36

C
C
C

g
ra

p
h
s

34 1502 24.26 31.15 26.51 28.26 26.29 255.32 50.06
36 3187 50.83 63.67 52.04 62.52 48.91 271.87 106.46
38 6946 94.53 112.04 101.59 118.24 103.52 564.13 197.70
40 15025 210.04 243.07 210.99 254.44 209.06 1668.35 519.69
42 33687 500.21 574.40 522.62 594.37 504.57 6378.04 1531.99
44 77450 1082.26 1275.57 1154.77 1274.17 1132.15 13658.87 5687.90
46 177465 2599.75 3269.27 2776.63 3225.35 2604.54 26874.47 15926.36
48 418112 7433.26 9087.24 7487.61 7951.47 7869.27 167149.83 75481.11

K
S

c
a
n
d
. 16 0 5.97 5.57 4.36 4.35 3.89 10.88 8.02

17 1 16.51 16.96 13.91 13.27 19.14 49.04 37.68
18 0 81.06 77.52 57.96 89.52 87.89 354.49 310.62
19 8 493.16 580.32 478.22 549.39 529.54 3737.21 3598.72
20 147 5574.00 7237.05 7036.95 6047.77 6685.28 58076.57 50048.51

Table 1: Enumerating up to isomorphism: all graphs (top), claw-free, cubic, connected
graphs (mid), and all KS candidates (bottom).

In previous work, SMS used clingo (Gebser et al., 2016), an ASP solver with support
for adding custom propagators. The IPASIR-UP interface enables us to replace clingo in
SMS with CaDiCaL. We use cb has external clause to indicate if we have a symmetry-
breaking clause to add and cb propagate to propagate literals. To exhaustively generate
all isomorph-free objects with the given property, we add a clause forbidding each object
found so far. We can do this via the standard IPASIR interface or IPASIR-UP using callback
cb check found model.

In the following, we compare the performance of SMS between CaDiCaL+IPASIR-UP
and clingo on three graph generation tasks. The first task is to generate up to isomorphism
all graphs for a given number n of vertices without additional restrictions, i.e., the formula
describing the graph is empty. The second task is to generate all connected, cubic, claw-free
graphs up to isomorphism. A graph is cubic if all vertices have degree 3 and a graph is claw-
free if it doesn’t contain a claw (a complete bipartite graph K1,3) as an induced subgraph.
We use auxiliary non-object variables to ensure that the graph is cubic and for each possible
embedding of the K1,3 in the resulting graph we add a clause ensuring that it is not the case.
Another SAT-based approach using static symmetry breaking was used to enumerate all up
to 36 vertices (Itzhakov & Codish, 2023). With SMS using the new IPASIR-UP interface
we are able to enumerate all connected, cubic, claw-free graphs up to 48 vertices. The third
task is to generate up to isomorphism all non-010-colorable graphs with a minimum degree
of at least three not containing a cycle of length 4. A graph is 010-colorable if the vertices
can be colored with 0 and 1 such that there is no monochromatic edge with color 1 and
no monochromatic triangle with color 0. These graphs are interesting for topics related to
the famous Kochen-Specker Theorem from quantum mechanics (Arends et al., 2011). For

1005

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

encoding the non-010-colorability, we follow previous work (Li et al., 2022). In contrast to
the first task, the encoding is relatively large, even exponential in the number of vertices.

For CaDiCaL, the default configuration propagates literals, makes the symmetry break-
ing clauses not forgettable, and exhaustively enumerates all graphs using the IPASIR-UP in-
terface when possible. Configuration enum-IPASIR propagates literals and adds symmetry-
breaking clauses via IPASIR-UP but uses IPASIR for solution enumeration. Configuration
no-prop corresponds to default without propagating literals but learning the clause imme-
diately. Configuration no-inpro corresponds to default without inprocessing on the non-
observed variables (i.e., option inprocessing of CaDiCaL is turned off). Configuration
forgettable corresponds to default but clauses added via the IPASIR-UP interface are for-
gettable. For clingo, we either add the clauses as redundant (configuration red), i.e., the
symmetry-breaking clauses are part of the clause-deletion policy, or the clauses are irredun-
dant (configuration irred).

Table 1 summarizes the results given the number of vertices in column n. The number
of generated graphs is given in column #graphs. All experiments with SMS ran on a cluster
equipped with Intel Xeon E5-2640v4 CPUs at 2.40 GHz.

For enumeration, the new interface gives a speedup over IPASIR for most instances: with
IPASIR, the search is started at the root level after a model has been found, while with
IPASIR-UP, the current trail is preserved and backtracked. CaDiCaL outperforms Clingo
in all the applications shown here. On other SMS applications, we observed Clingo and
CaDiCaL performing similarly. However, CaDiCaL with IPASIR-UP shows the potential
to solve problems outside the other solver’s reach.

5.2 Experiments with SMT

Satisfiability Modulo Theories (SMT) solvers serve as the back-end reasoning engine for
a variety of applications (e.g., Leino, 2010; Alur et al., 2013; Cadar et al., 2008; Niemetz
et al., 2018; Godefroid et al., 2012; Backes et al., 2020). The majority of state-of-the-
art SMT solvers are based on the CDCL(T) framework (Nieuwenhuis et al., 2006), which
tightly integrates theory solvers with a CDCL SAT solver at its core. The CDCL(T) SAT
engine is queried to find a satisfying assignment of the propositional abstraction of the input
formula, which is then iteratively refined until either the assignment is T -consistent or the
SAT engine determines unsat.

The CDCL(T) framework requires a tight integration with the SAT solver in a way
that allows the theory layer to interact with the SAT solver during search, i.e., in an
online fashion. This is in contrast to other lazy SMT approaches based on the same ab-
straction/refinement principle that integrate a SAT solver as a black box, e.g., lemmas on
demand (Barrett et al., 2002; Moura & Rueß, 2002). That is, rather than querying the
SAT solver for a full satisfying assignment of the propositional abstraction, the theory layer
guides the search of the SAT solver until a T -consistent assignment is found or the formula
becomes unsatisfiable.

Further, throughout this process, a backward communication channel allows the SAT
solver to notify the theory layer about variable assignments, decisions, and backtracks. The
theory layer uses this information to derive conflicts, propagate theory literals, or suggest
decision variables based on theory-guided heuristics. If theory propagations are involved

1006

Satisfiability modulo User Propagators

cvc5 cvc5-ipasirup
Division solved time [s] solved time [s]

Arith (6,931) 6,361 175,490 6,362 177,677
BitVec (6,185) 5,656 164,392 5,635 170,636
Equality (12,159) 5,347 2,053,167 5,351 2,051,612
Equality+LinearArith (56,562) 45,987 3,183,536 45,972 3,187,670
Equality+MachineArith (10,912) 1,077 2,956,148 1,086 2,955,064
Equality+NonLinearArith (21,450) 13,491 2,437,631 13,488 2,445,284
FPArith (3,979) 3,169 262,984 3,171 262,844
QF Bitvec (46,191) 43,868 932,547 43,878 931,884
QF Datatypes (8,903) 8,300 197,540 8,363 175,047
QF Equality (8,054) 8,048 4,633 8,048 4,004
QF Equality+Bitvec (16,809) 15,943 339,387 16,167 232,135
QF Equality+LinearArith (3,644) 3,487 55,058 3,536 38,944
QF Equality+NonLinearArith (1,118) 773 113,295 772 111,708
QF FPArith (76,252) 76,117 67,160 76,111 61,681
QF LinearIntArith (16,469) 12,122 1,466,880 12,599 1,332,706
QF LinearRealArith (2,008) 1,799 103,513 1,870 72,126
QF NonLinearIntArith (25,446) 13,636 3,823,539 14,360 3,517,103
QF NonLinearRealArith (12,154) 11,234 308,073 11,323 277,400
QF Strings (103,405) 99,936 1,193,661 100,368 1,096,961

Total (438,631) 376,351 19,838,643 378,460 19,102,495

Table 2: Number of solved instances and runtime on non-incremental SMT-LIB benchmarks
with a 300 seconds time limit.

in deriving a conflict in the SAT solver, the theory layer must provide explanations for
the propagated theory literals. If a partial assignment of the propositional abstraction is
T -inconsistent, the theory layer sends a lemma to the SAT solver to refine the abstraction.

cvc5 is a state-of-the-art CDCL(T) SMT solver widely used in industry and academic
projects (Barbosa et al., 2022). It relies on a highly customized version of MiniSat (Eén &
Sörensson, 2003a) as its core SAT engine, which was extended to support the production
of resolution proofs, pushing and popping of assertion levels, and custom theory-guided
decision heuristics. The interaction with cvc5’s theory layer is directly implemented in
MiniSat by various callbacks.

These customizations make it difficult to replace cvc5’s version of MiniSat with a state-
of-the-art SAT solver to take advantage of improvements in SAT solving. However, replacing
this customized version of MiniSat with a SAT solver that implements IPASIR-UP enables
us to easily switch it out with any other solver that implements the interface. It has the
additional advantage that the interaction with the SAT layer is standardized and clean.
That is, no CDCL(T)-specific modifications of the SAT solver, which may accidentally
impact performance, are required.

We integrated CaDiCaL with the IPASIR-UP extension as main CDCL(T) SAT engine
of cvc5 while fully utilizing the IPASIR-UP notification and callback interface: notify as-

signment is used to construct the current partial assignment for the observed theory lit-
erals; the incremental solver state of cvc5 is managed via notify new decision level

1007

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

cvc5 cvc5-ipasirup
Division solved time [s] solved time [s]

Arith (11/41,362) 41,362 88 41,362 104
BitVec (18/38,856) 36,125 2,565 36,125 2,572
Equality (4,067/711,896) 46,586 592,148 46,574 593,739
Equality+LinearArith (1,894/1,346,978) 435,916 29,787 436,107 30,834
Equality+MachineArith (4/2,269) 818 302 818 303
Equality+NonLinearArith (4,374/739,582) 89,345 615,636 91,082 609,840
FPArith (10/6,055) 3,422 1,826 3,421 1,828
QF Bitvec (2,590/53,684) 51,526 55,030 51,477 56,490
QF Equality (1,778/29,990) 29,986 2,484 29,986 2,517
QF Equality+Bitvec (3,633/9,870) 7,351 138,470 7,323 146,137
QF Equality+Bitvec+Arith (1,710/34,795) 33,403 59,159 33,418 51,784
QF Equality+LinearArith (3,947/6,039,485) 3,693,170 106,937 2,400,530 113,273
QF Equality+NonLinearArith (1,018/164,755) 104,275 14,038 105,398 13,683
QF FPArith (19,188/588,878) 552,699 757,344 567,287 616,019
QF LinearIntArith (69/20,041,214) 2,325,341 17,562 1,521,214 16,172
QF LinearRealArith (10/1,515) 515 3,003 700 2,652
QF NonLinearIntArith (12/4,219,215) 771,648 3,603 479,184 3,603

Total (44,333/34,070,399) 8,223,488 2,399,991 5,852,006 2,261,556

Table 3: Number of solved satisfiability queries and runtime on incremental SMT-LIB
benchmarks with a 300 seconds time limit. Numbers (i/q) show the total number of in-
stances i and the total number of satisfiability queries q for these instances.

and notify backtrack, which are utilized to restore its internal state when backtracking
decisions; cb propagate and cb add reason clause lit are used for theory propagations
and explanations; cb decide to implement custom decision heuristics; cb add external-

clause lit for adding lemmas and conflicts; and cb check found model to check whether
the SAT assignment is T -satisfiable. cvc5 further uses phase to set the phase for specific
variables, and is decision to query if a specific variable was used to make a decision.

The full integration of CaDiCaL as CDCL(T) SAT engine of cvc5 required about
600 lines of C++ code on top of cvc5 1.1.1. In the following, we refer to this version of
cvc5 with CaDiCaL as the CDCL(T) SAT engine as cvc5-ipasirup. Note that both con-
figurations utilize a CaDiCaL instance that is independent from the CDCL(T) SAT engine
as the SAT solver backend of the bit-vector theory solver, which implements bit-blasting.
Further note that proof production (Barbosa et al., 2022, 2023) is not yet supported in
cvc5-ipasirup, since this requires an extension of the proof infrastructure of cvc5 to
support DRAT proofs (MiniSat was customized to emit resolution proofs).

We evaluate the overall performance of cvc5-ipasirup against cvc5 version 1.1.1 on
all non-incremental and incremental benchmarks of the 2024 release of SMT-LIB (Preiner
et al., 2024a, 2024b). We ran this experiment on a cluster equipped with AMD Ryzen 9
7950X CPUs and allocated one CPU core, 8GB of RAM and a time limit of 300 seconds for
each solver and benchmark pair (unknown answers were treated as timeouts). Table 2 shows
the number of solved benchmarks and runtime on non-incremental divisions, and Table 3
gives the number of solved satisfiability queries and runtime in incremental divisions in

1008

Satisfiability modulo User Propagators

SMT-LIB. The results in both tables are grouped into the divisions defined in SMT-COMP
2024 (Bobot et al., 2024).

On the non-incremental benchmarks, cvc5-ipasirup solves 2,109 more benchmarks
and improves over cvc5 in 13 out of 19 divisions overall. On the 373,311 commonly solved
benchmarks, cvc5-ipasirup (692,554s) is 1.43× faster than cvc5 (990,307s). On com-
monly solved quantifier-free (quantified) instances, cvc5-ipasirup improves in terms of
runtime by a factor of 1.48× (1.08×). For quantifier-free divisions, cvc5-ipasirup signifi-
cantly improves in terms of solved instances over cvc5 in arithmetic divisions (+1, 361), in
QF Strings (+432) and in QF Equality+BitVec (+224), which contains logics that combine
bit-vectors with arrays. In quantified divisions, cvc5-ipasirup’s performance is compara-
ble to cvc5, solving 23 less benchmarks overall. Interestingly, cvc5-ipasirup exceeds the
memory limit on 91 (62) more quantifier-free (quantified) instances than cvc5.

On the incremental benchmarks, cvc5-ipasirup improves over cvc5 in 6 out of 17 di-
visions. However, overall cvc5-ipasirup solves 29% less incremental satisfiability queries.
The majority of these unsolved queries are in the arithmetic divisions QF Equality+Linear-
Arith, QF LinearIntArith and QF NonLinearIntArith. All of these divisions contain bench-
marks with a large number of satisfiability queries, some with over one million queries. One
of the main differences of cvc5-ipasirup and cvc5 on incremental benchmarks is that the
customized version of MiniSat in cvc5 has native push/pop support for adding and delet-
ing clauses in the SAT solver. In cvc5-ipasirup, push/pop is implemented via activation
literals and solving under assumptions. Preliminary experiments showed that activation
literals can have a significant performance overhead compared to native push/pop support,
even for simple benchmarks that contain a large number of incremental queries. We believe
that this is the main reason for cvc5-ipasirup’s performance degradation. This is rather
surprising since activation literals are a widely used approach in incremental SAT solving.
As future work, we will investigate ways to improve activation literals for this use case. If
this is not successful we intend to add native push/pop support in CaDiCaL.

6. Summary and Future Work

In this paper, we proposed an extension of the IPASIR interface of SAT solvers to facilitate
interactions with the solver during the search. We demonstrated the usage and benefits
of such an interface in two representative use cases. However, to enable all functional-
ities of modern SAT solvers, some restrictions were introduced. For example, to enable
inprocessing, external clauses can have only observed (i.e., frozen) variables.

We believe that both developers of more complex reasoning tools and end-users of SAT
solvers can strongly benefit from a unified interface that provides access and control over
the details of CDCL methods during incremental problem solving. Though the proposed
IPASIR-UP interface provides a sufficient set of functions to cover a very wide range of
applications, there are many possible extensions to consider in the future. We hope that
further discussions and further use cases of IPASIR-UP, for instance in MaxSAT, knowledge
compilation or in QBF reasoning, will make it clear what kind of extensions and refinements
would be the most practical to implement.

Acknowledgements. The authors would like to thank the organizers, visitors and partic-
ipants of the program “Satisfiability: Theory, Practice, and Beyond” at the Simons Institute

1009

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

for the Theory of Computing for their many valuable comments and fruitful discussions. We
also thank Mathias Fleury and Florian Pollitt for the several discussions about CaDiCaL.

This work was supported in part by the Stanford Center for Automated Reasoning, the
Stanford Center for Blockchain Research, a gift from Amazon Web Services, by the Austrian
Science Fund (FWF) under projects No. T-1306 and P-32441, and by the Vienna Science
and Technology Fund (WWTF) under project No. ICT19-065 (Reveal-AI).

References

Alur, R., Bod́ık, R., Juniwal, G., Martin, M. M. K., Raghothaman, M., Seshia, S. A.,
Singh, R., Solar-Lezama, A., Torlak, E., & Udupa, A. (2013). Syntax-guided synthesis.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pp. 1–8. IEEE.

Arends, F., Ouaknine, J., & Wampler, C. W. (2011). On searching for small Kochen-Specker
vector systems. In Kolman, P., & Kratochv́ıl, J. (Eds.), Graph-Theoretic Concepts in
Computer Science - 37th International Workshop, WG 2011, Teplá Monastery, Czech
Republic, June 21-24, 2011. Revised Papers, Vol. 6986 of LNCS, pp. 23–34. Springer.

Audemard, G., Lagniez, J., & Simon, L. (2013). Improving Glucose for incremental SAT
solving with assumptions: Application to MUS extraction. In Järvisalo, M., & Gelder,
A. V. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2013 - 16th
International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, Vol. 7962
of Lecture Notes in Computer Science, pp. 309–317. Springer.

Bacchus, F., Järvisalo, M., & Martins, R. (2021). Maximum satisfiabiliy. In Biere, A.,
Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability - Second
Edition, Vol. 336 of Frontiers in Artificial Intelligence and Applications, pp. 929–991.
IOS Press.

Backes, J., Berrueco, U., Bray, T., Brim, D., Cook, B., Gacek, A., Jhala, R., Luckow,
K. S., McLaughlin, S., Menon, M., Peebles, D., Pugalia, U., Rungta, N., Schlesinger,
C., Schodde, A., Tanuku, A., Varming, C., & Viswanathan, D. (2020). Stratified
abstraction of access control policies. In Lahiri, S. K., & Wang, C. (Eds.), Computer
Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA,
USA, July 21-24, 2020, Proceedings, Part I, Vol. 12224 of Lecture Notes in Computer
Science, pp. 165–176. Springer.

Balyo, T., Biere, A., Iser, M., & Sinz, C. (2016). SAT race 2015. Artif. Intell., 241, 45–65.

Barbosa, H., Barrett, C. W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A.,
Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng,
Y., Tinelli, C., & Zohar, Y. (2022). cvc5: A versatile and industrial-strength SMT
solver. In Fisman, D., & Rosu, G. (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I, Vol. 13243 of Lecture Notes
in Computer Science, pp. 415–442. Springer.

1010

Satisfiability modulo User Propagators

Barbosa, H., Barrett, C. W., Cook, B., Dutertre, B., Kremer, G., Lachnitt, H., Niemetz, A.,
Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Tinelli, C., & Zohar, Y. (2023).
Generating and exploiting automated reasoning proof certificates. Commun. ACM,
66 (10), 86–95.

Barbosa, H., Reynolds, A., Kremer, G., Lachnitt, H., Niemetz, A., Nötzli, A., Ozdemir,
A., Preiner, M., Viswanathan, A., Viteri, S., Zohar, Y., Tinelli, C., & Barrett, C. W.
(2022). Flexible proof production in an industrial-strength SMT solver. In Blanchette,
J., Kovács, L., & Pattinson, D. (Eds.), Automated Reasoning - 11th International Joint
Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, Vol. 13385
of Lecture Notes in Computer Science, pp. 15–35. Springer.

Barrett, C. W., Dill, D. L., & Stump, A. (2002). Checking satisfiability of first-order formulas
by incremental translation to SAT. In Brinksma, E., & Larsen, K. G. (Eds.), Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen, Denmark,
July 27-31, 2002, Proceedings, Vol. 2404 of Lecture Notes in Computer Science, pp.
236–249. Springer.

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2021). Satisfiability modulo
theories. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook
of Satisfiability - Second Edition, Vol. 336 of Frontiers in Artificial Intelligence and
Applications, pp. 1267–1329. IOS Press.

Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., & Pollitt, F. (2024). Cadical 2.0.
In Gurfinkel, A., & Ganesh, V. (Eds.), Computer Aided Verification - 36th Interna-
tional Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part I, Vol. 14681 of Lecture Notes in Computer Science, pp. 133–152. Springer.

Biere, A., Fazekas, K., Fleury, M., & Heisinger, M. (2020). CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In Balyo, T., Froleyks,
N., Heule, M., Iser, M., Järvisalo, M., & Suda, M. (Eds.), Proc. of SAT Competition
2020 – Solver and Benchmark Descriptions, Vol. B-2020-1 of Department of Computer
Science Report Series B, pp. 51–53. University of Helsinki.

Bjørner, N. S., Eisenhofer, C., & Kovács, L. (2023). Satisfiability modulo custom theories
in Z3. In Dragoi, C., Emmi, M., & Wang, J. (Eds.), Verification, Model Checking, and
Abstract Interpretation - 24th International Conference, VMCAI 2023, Boston, MA,
USA, January 16-17, 2023, Proceedings, Vol. 13881 of Lecture Notes in Computer
Science, pp. 91–105. Springer.

Bobot, F., Bromberger, M., & Jonás, M. (2024). The International Satisfiability Modulo
Theories Competition (SMT-COMP). https://smt-comp.github.io/2024.

Bogaerts, B., Gocht, S., McCreesh, C., & Nordström, J. (2022). Certified symmetry and
dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022 Virtual Event, February 22 - March 1, 2022,
pp. 3698–3707. AAAI Press.

Bouton, T., Oliveira, D. C. B. D., Déharbe, D., & Fontaine, P. (2009). veriT: An open,
trustable and efficient SMT-solver. In Schmidt, R. A. (Ed.), Automated Deduc-
tion - CADE-22, 22nd International Conference on Automated Deduction, Montreal,

1011

https://smt-comp.github.io/2024

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Canada, August 2-7, 2009. Proceedings, Vol. 5663 of Lecture Notes in Computer Sci-
ence, pp. 151–156. Springer.

Bright, C., Cheung, K. K. H., Stevens, B., Kotsireas, I. S., & Ganesh, V. (2020). Nonexis-
tence certificates for ovals in a projective plane of order ten. In Gasieniec, L., Klasing,
R., & Radzik, T. (Eds.), Combinatorial Algorithms - 31st International Workshop,
IWOCA 2020, Bordeaux, France, June 8-10, 2020, Proceedings, Vol. 12126 of Lecture
Notes in Computer Science, pp. 97–111. Springer.

Bright, C., Dokovic, D. Z., Kotsireas, I. S., & Ganesh, V. (2019). The SAT+CAS method
for combinatorial search with applications to best matrices. Ann. Math. Artif. Intell.,
87 (4), 321–342.

Bright, C., Ganesh, V., Heinle, A., Kotsireas, I. S., Nejati, S., & Czarnecki, K. (2016).
Mathcheck2: A SAT+CAS verifier for combinatorial conjectures. In Gerdt, V. P.,
Koepf, W., Seiler, W. M., & Vorozhtsov, E. V. (Eds.), Computer Algebra in Scien-
tific Computing - 18th International Workshop, CASC 2016, Bucharest, Romania,
September 19-23, 2016, Proceedings, Vol. 9890 of Lecture Notes in Computer Science,
pp. 117–133. Springer.

Bright, C., Kotsireas, I. S., & Ganesh, V. (2020). Applying computer algebra systems with
SAT solvers to the williamson conjecture. J. Symb. Comput., 100, 187–209.

Bright, C., Kotsireas, I. S., Heinle, A., & Ganesh, V. (2021). Complex golay pairs up to
length 28: A search via computer algebra and programmatic SAT. J. Symb. Comput.,
102, 153–172.

Bruttomesso, R., Pek, E., Sharygina, N., & Tsitovich, A. (2010). The opensmt solver. In
Esparza, J., & Majumdar, R. (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, Vol. 6015 of Lecture Notes in Com-
puter Science, pp. 150–153. Springer.

Cadar, C., Dunbar, D., & Engler, D. R. (2008). KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In Draves, R., & van Renesse, R.
(Eds.), 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pp. 209–
224. USENIX Association.

Cimatti, A., Griggio, A., Schaafsma, B. J., & Sebastiani, R. (2013). The MathSAT5 SMT
solver. In Piterman, N., & Smolka, S. A. (Eds.), Tools and Algorithms for the Con-
struction and Analysis of Systems - 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, Vol. 7795 of Lecture Notes
in Computer Science, pp. 93–107. Springer.

Codish, M., Gange, G., Itzhakov, A., & Stuckey, P. J. (2016). Breaking symmetries in
graphs: The nauty way. In Principles and Practice of Constraint Programming -
22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016,
Proceedings, Vol. 9892 of Lecture Notes in Computer Science, pp. 157–172. Springer.

1012

Satisfiability modulo User Propagators

Coutelier, R. (2023). Chronological vs. non-chronological backtracking in satisfiability mod-
ulo theories. Master’s thesis, Université de Liège, Liège, Belgique.

de Moura, L. M., & Bjørner, N. (2008). Z3: an efficient SMT solver. In Ramakrishnan,
C. R., & Rehof, J. (Eds.), Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, Vol. 4963 of Lecture Notes in Computer
Science, pp. 337–340. Springer.

Devriendt, J., Bogaerts, B., Cat, B. D., Denecker, M., & Mears, C. (2012). Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece,
November 7-9, 2012, pp. 49–56. IEEE Computer Society.

Eén, N., & Sörensson, N. (2003a). An extensible SAT-solver. In SAT, Vol. 2919 of Lecture
Notes in Computer Science, pp. 502–518. Springer.

Eén, N., & Sörensson, N. (2003b). Temporal induction by incremental SAT solving. In
Strichman, O., & Biere, A. (Eds.), First International Workshop on Bounded Model
Checking, BMC@CAV 2003, Boulder, Colorado, USA, July 13, 2003, Vol. 89 of Elec-
tronic Notes in Theoretical Computer Science, pp. 543–560. Elsevier.

Eisenhofer, C., Kovács, L., & Rawson, M. (2023). Embedding the connection calculus in
satisfiability modulo theories. In Otten, J., & Bibel, W. (Eds.), Proceedings of the 1st
International Workshop on Automated Reasoning with Connection Calculi (AReCCa
2023), Prague, Czech Republic, September 18, 2023, Vol. 3613 of CEUR Workshop
Proceedings, pp. 54–63. CEUR-WS.org.

Erez, A., & Nadel, A. (2015). Finding bounded path in graph using SMT for automatic clock
routing. In Kroening, D., & Pasareanu, C. S. (Eds.), Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part II, Vol. 9207 of Lecture Notes in Computer Science, pp. 20–
36. Springer.

Fazekas, K., Biere, A., & Scholl, C. (2019). Incremental inprocessing in SAT solving. In
Janota, M., & Lynce, I. (Eds.), Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings, Vol. 11628 of Lecture Notes in Computer Science, pp. 136–154. Springer.

Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., & Biere, A. (2023).
IPASIR-UP: user propagators for CDCL. In Mahajan, M., & Slivovsky, F. (Eds.),
26th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2023, July 4-8, 2023, Alghero, Italy, Vol. 271 of LIPIcs, pp. 8:1–8:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., & Biere, A. (2024a).
Supplementary material of ”Satisfiability modulo User Propagators”. https://doi.
org/10.5281/zenodo.13710465.

Fazekas, K., Pollitt, F., Fleury, M., & Biere, A. (2024b). Certifying incremental SAT solving.
In Bjørner, N. S., Heule, M., & Voronkov, A. (Eds.), LPAR 2024: Proceedings of 25th

1013

https://doi.org/10.5281/zenodo.13710465
https://doi.org/10.5281/zenodo.13710465

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Conference on Logic for Programming, Artificial Intelligence and Reasoning, Port
Louis, Mauritius, May 26-31, 2024, Vol. 100 of EPiC Series in Computing, pp. 321–
340. EasyChair.

Fazekas, K., Pollitt, F., Fleury, M., & Biere, A. (2024c). Incremental proofs for bounded
model checking. In Kunz, W. (Ed.), 27th GMM/ITG/GI Workshop on Methods
and Description Languages for Modelling and Verification of Circuits and Systems
(MBMV’24), Kaiserslautern, Germany, Vol. 314 of ITG-Fachberichte, pp. 133–143.
VDE Verlag.

Ganesh, V., O’Donnell, C. W., Soos, M., Devadas, S., Rinard, M. C., & Solar-Lezama, A.
(2012). Lynx: A programmatic SAT solver for the RNA-folding problem. In Cimatti,
A., & Sebastiani, R. (Eds.), Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
Vol. 7317 of Lecture Notes in Computer Science, pp. 143–156. Springer.

Gebser, M., Janhunen, T., & Rintanen, J. (2014). SAT modulo graphs: Acyclicity. In Fermé,
E., & Leite, J. (Eds.), Logics in Artificial Intelligence - 14th European Conference,
JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, Vol.
8761 of Lecture Notes in Computer Science, pp. 137–151. Springer.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Wanko, P. (2016).
Theory solving made easy with clingo 5. In Carro, M., King, A., Saeedloei, N., &
Vos, M. D. (Eds.), Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA,
Vol. 52 of OASIcs, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Gent, I. P., Miguel, I., & Moore, N. C. A. (2010). Lazy explanations for constraint propa-
gators. In Carro, M., & Peña, R. (Eds.), Practical Aspects of Declarative Languages,
12th International Symposium, PADL 2010, Madrid, Spain, January 18-19, 2010.
Proceedings, Vol. 5937 of Lecture Notes in Computer Science, pp. 217–233. Springer.

Godefroid, P., Levin, M. Y., & Molnar, D. A. (2012). SAGE: whitebox fuzzing for security
testing. Commun. ACM, 55 (3), 40–44.

Gomes, C. P., Sabharwal, A., & Selman, B. (2021). Model counting. In Biere, A., Heule,
M., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability - Second Edition,
Vol. 336 of Frontiers in Artificial Intelligence and Applications, pp. 993–1014. IOS
Press.

Heule, M. J. H. (2019). Optimal symmetry breaking for graph problems. Math. Comput.
Sci., 13 (4), 533–548.

Hickey, R., & Bacchus, F. (2019). Speeding up assumption-based SAT. In Janota, M., &
Lynce, I. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd
International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
Vol. 11628 of Lecture Notes in Computer Science, pp. 164–182. Springer.

Hooker, J. N. (1993). Solving the incremental satisfiability problem. J. Log. Program.,
15 (1&2), 177–186.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2019). RC2: an efficient MaxSAT solver.
J. Satisf. Boolean Model. Comput., 11 (1), 53–64.

1014

Satisfiability modulo User Propagators

Itzhakov, A., & Codish, M. (2020). Incremental symmetry breaking constraints for graph
search problems. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 1536–1543. AAAI Press.

Itzhakov, A., & Codish, M. (2023). Breaking symmetries with high dimensional graph
invariants and their combination. In Ciré, A. A. (Ed.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 20th International
Conference, CPAIOR 2023, Nice, France, May 29 - June 1, 2023, Proceedings, Vol.
13884 of Lecture Notes in Computer Science, pp. 133–149. Springer.

Järvisalo, M., Heule, M., & Biere, A. (2012). Inprocessing rules. In Gramlich, B., Miller,
D., & Sattler, U. (Eds.), Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, Vol. 7364 of Lecture
Notes in Computer Science, pp. 355–370. Springer.

Kiesl-Reiter, B., & Whalen, M. W. (2023). Proofs for incremental SAT with inprocessing.
In FMCAD, pp. 132–140. IEEE.

Kim, J., Whittemore, J., & Sakallah, K. A. (2000). On solving stack-based incremental satis-
fiability problems. In Proceedings of the IEEE International Conference On Computer
Design: VLSI In Computers & Processors, ICCD ’00, Austin, Texas, USA, September
17-20, 2000, pp. 379–382. IEEE Computer Society.

Kirchweger, M., Peitl, T., & Szeider, S. (2023a). Co-certificate learning with SAT modulo
symmetries. In Proceedings of the 34th International Joint Conference on Artificial
Intelligence, IJCAI 2023. AAAI Press/IJCAI. To appear.

Kirchweger, M., Peitl, T., & Szeider, S. (2023b). A SAT solver’s opinion on the Erdős-Faber-
Lovász conjecture. In Mahajan, M., & Slivovsky, F. (Eds.), The 26th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2023), July 04-
08, 2023, Alghero, Italy, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Kirchweger, M., Scheucher, M., & Szeider, S. (2022). A SAT attack on Rota’s basis conjec-
ture. In Meel, K. S., & Strichman, O. (Eds.), 25th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,
Vol. 236 of LIPIcs, pp. 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Kirchweger, M., Scheucher, M., & Szeider, S. (2023). SAT-based generation of planar graphs.
In Mahajan, M., & Slivovsky, F. (Eds.), The 26th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2023), July 04-08, 2023, Alghero, Italy,
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Kirchweger, M., & Szeider, S. (2021). SAT modulo symmetries for graph generation. In
Michel, L. D. (Ed.), 27th International Conference on Principles and Practice of Con-
straint Programming, CP 2021, Montpellier, France (Virtual Conference), October
25-29, 2021, Vol. 210 of LIPIcs, pp. 34:1–34:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Kirchweger, M., & Szeider, S. (2024). Computing small rainbow cycle numbers with SAT
modulo symmetries (short paper). In Shaw, P. (Ed.), 30th International Conference on
Principles and Practice of Constraint Programming, CP 2024, September 2-6, 2024,

1015

Fazekas, Niemetz, Preiner, Kirchweger, Szeider & Biere

Girona, Spain, Vol. 307 of LIPIcs, pp. 37:1–37:11. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Kupferschmid, S., Lewis, M., Schubert, T., & Becker, B. (2011). Incremental preprocessing
methods for use in BMC. Formal Methods Syst. Des., 39 (2), 185–204.

Leino, K. R. M. (2010). Dafny: An automatic program verifier for functional correctness. In
Clarke, E. M., & Voronkov, A. (Eds.), Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-
May 1, 2010, Revised Selected Papers, Vol. 6355 of Lecture Notes in Computer Science,
pp. 348–370. Springer.

Li, Z., Bright, C., & Ganesh, V. (2022). A SAT solver + computer algebra attack on
the minimum Kochen–Specker problem. Tech. rep., School of Computer Science
at the University of Windsor. https://cbright.myweb.cs.uwindsor.ca/reports/

nmi-ks-preprint.pdf.

Möhle, S., & Biere, A. (2019). Backing backtracking. In Janota, M., & Lynce, I. (Eds.),
Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, Vol. 11628 of
Lecture Notes in Computer Science, pp. 250–266. Springer.

Moura, L. D., & Rueß, H. (2002). Lemmas on demand for satisfiability solvers. In The
5th International Symposium on the Theory and Applications of Satisfiability Testing,
SAT 2002, Cincinnati, USA, May 15, 2002.

Nadel, A. (2022). Introducing Intel(R) SAT solver. In Meel, K. S., & Strichman, O. (Eds.),
25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, Vol. 236 of LIPIcs, pp. 8:1–8:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Nadel, A., & Ryvchin, V. (2012). Efficient SAT solving under assumptions. In Cimatti,
A., & Sebastiani, R. (Eds.), Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
Vol. 7317 of Lecture Notes in Computer Science, pp. 242–255. Springer.

Nadel, A., & Ryvchin, V. (2018). Chronological backtracking. In Beyersdorff, O., & Win-
tersteiger, C. M. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2018
- 21st International Conference, SAT 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, Vol. 10929 of Lecture
Notes in Computer Science, pp. 111–121. Springer.

Nadel, A., Ryvchin, V., & Strichman, O. (2012). Preprocessing in incremental SAT. In
Cimatti, A., & Sebastiani, R. (Eds.), Theory and Applications of Satisfiability Test-
ing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012.
Proceedings, Vol. 7317 of Lecture Notes in Computer Science, pp. 256–269. Springer.

Nadel, A., Ryvchin, V., & Strichman, O. (2014). Ultimately incremental SAT. In Sinz,
C., & Egly, U. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2014
- 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, Vol. 8561 of Lecture Notes in
Computer Science, pp. 206–218. Springer.

1016

https://cbright.myweb.cs.uwindsor.ca/reports/nmi-ks-preprint.pdf
https://cbright.myweb.cs.uwindsor.ca/reports/nmi-ks-preprint.pdf

Satisfiability modulo User Propagators

Niemetz, A., Preiner, M., Wolf, C., & Biere, A. (2018). Btor2, BtorMC and Boolector
3.0. In Chockler, H., & Weissenbacher, G. (Eds.), Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, Vol. 10981 of Lecture
Notes in Computer Science, pp. 587–595. Springer.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53 (6), 937–977.

Preiner, M., Schurr, H.-J., Barrett, C., Fontaine, P., Niemetz, A., & Tinelli, C. (2024a).
SMT-LIB release 2024 (incremental benchmarks). https://doi.org/10.5281/

zenodo.11186591.

Preiner, M., Schurr, H.-J., Barrett, C., Fontaine, P., Niemetz, A., & Tinelli, C. (2024b).
SMT-LIB release 2024 (non-incremental benchmarks). https://doi.org/10.5281/

zenodo.11061097.

Silva, J. P. M., & Sakallah, K. A. (1996). GRASP - a new search algorithm for satisfiability.
In Rutenbar, R. A., & Otten, R. H. J. M. (Eds.), Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, November 10-14, 1996, pp. 220–227. IEEE Computer Society / ACM.

Silva, J. P. M., & Sakallah, K. A. (1999). GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48 (5), 506–521.

van der Tak, P., Ramos, A., & Heule, M. (2011). Reusing the assignment trail in CDCL
solvers. J. Satisf. Boolean Model. Comput., 7 (4), 133–138.

Whittemore, J., Kim, J., & Sakallah, K. A. (2001). SATIRE: A new incremental satisfiability
engine. In Proceedings of the 38th Design Automation Conference, DAC 2001, Las
Vegas, NV, USA, June 18-22, 2001, pp. 542–545. ACM.

Zhang, H. (2021). Combinatorial designs by SAT solvers. In Biere, A., Heule, M., van
Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability - Second Edition, Vol. 336
of Frontiers in Artificial Intelligence and Applications, pp. 819–858. IOS Press.

Zhang, T., & Szeider, S. (2023). Searching for smallest universal graphs and tournaments
with SAT. In 29th International Conference on Principles and Practice of Constraint
Programming, CP 2023, August 27-31, 2023, Toronto, Canada, Vol. 280 of LIPIcs,
pp. 39:1–39:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Zulkoski, E., Ganesh, V., & Czarnecki, K. (2016). MATHCHECK: A math assistant via
a combination of computer algebra systems and SAT solvers. In Kambhampati, S.
(Ed.), Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 4228–4233. IJ-
CAI/AAAI Press.

1017

https://doi.org/10.5281/zenodo.11186591
https://doi.org/10.5281/zenodo.11186591
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097

	Introduction
	An Interface Beyond IPASIR
	Configuration and Management
	Inspecting the Trail via Notifications
	Influencing CDCL via Callbacks
	An Example CDCL Flow with IPASIR-UP Callbacks

	Combining External Propagation with Features of SAT Solvers
	Clause Database Reduction
	Finding Fixed Assignments
	Inprocessing and Solution Reconstruction
	Decision Heuristics
	The Lack of Backtracking
	Proof Production

	Related Work
	Empirical Evaluation
	Experiments with SMS
	Experiments with SMT

	Summary and Future Work
	References

