
Formal Methods in Computer-Aided Design 2021

Model Checking AUTOSAR Components
with CBMC

Timothee Durand∗, Katalin Fazekas† , Georg Weissenbacher† and Jakob Zwirchmayr∗
∗TTTech Auto AG, Vienna, Austria

†TU Wien, Vienna, Austria

Abstract—Automotive software needs to comply with stringent
functional safety standards to reduce the risk of malfunction.
In particular, the ISO 26262 standard highly recommends the
use of formal verification for highly safety-critical software
components. Automated formal verification techniques (such as
Model Checking) enable the quick detection of intricate software
bugs and can, to a limited extent, even guarantee their absence.

We report our efforts to deploy the openly available verification
tool CBMC to verify AUTOSAR Software Components and
Complex Device Drivers using Bounded Model Checking and
k-induction combined with upfront static analysis.

I. INTRODUCTION

Modern cars now contain as many as 150 Electronic Con-
trol Units (ECUs) running software from different suppliers.
AUTOSAR, an open and standardized software architecture
for automotive applications, guarantees the interoperability
of automotive software components. This platform provides
a common development methodology based on a standard-
ized exchange format for describing software components
(ARXML), standardized communication interfaces and a Run-
Time Environment (RTE), and a basic software (BSW) layer
(see Fig. 1). The BSW comprises hardware-specific software
modules (including Complex Device Drivers (CDDs)) that
provide functions to the upper software layers. The RTE
middleware provides interfaces and functions for inter- and
intra-ECU communication between the application software
components. Software Components (SWCs) in the application
layer access the lower layers via the RTE, and can hence be
readily deployed on different vehicle and platform variants.

The ISO 26262 [1] functional safety standard establishes
safety requirements for automotive components (including
software). The norm defines four Automotive Safety In-
tegrity Levels (ASILs) ranging from A (low risk) to D (life-
threatening hazards). ASIL-D requires the highest degree of
rigor, including (semi-)formal verification in the development
process. Consequently, formal methods are frequently applied
in industrial dependable system design [2]. Moreover, ASIL-
code needs to be reverified whenever the implementation is
changed, re-generated, or re-configured.

In this context, automated static analysis techniques (such
as abstract interpretation or software model checking [3], [4])
are particularly attractive, as they require comparatively little
manual interaction and can detect intricate software bugs and,
to a limited extent, even guarantee their absence.

We investigate the applicability of model checking to AU-
TOSAR code written in ANSI-C. While commercial tools for

Application Layer/Software Components (SWC)

AUTOSAR Runtime Environment (RTE)

Complex
Device
Drivers
(CDDs)

Services Layer

ECU Abstraction Layer

MCU Abstraction Layer

Microcontroller (MCU)

Basic
Software
(BSW)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 1. AUTOSAR Architecture

static analysis of AUTOSAR code exist [5], we focus on the
software model checking tool CBMC [6] because of the tool’s
availability, sustained development, and its permissive open
source license. The latter allowed us to adapt CBMC to our
work-flow and requirements: the specifics of AUTOSAR soft-
ware and the ISO 26262 requirements (such as the ARXML
description, the use of the RTE, and repeated verification runs)
imposes the need for an automated tool chain.

Contributions. Our report (based on the master’s thesis of
the first author [7]) describes the following contributions:

1) To apply CBMC to AUTOSAR code, we generate a test
harness and RTE-stubs from an ARXML description.

2) We deploy Bounded Model Checking (BMC) to detect
bugs, k-Induction to prove their absence, and combine
both techniques with an upfront static analysis to improve
verification performance and results.

3) We present case studies for SWCs and CDDs and discuss
the different challenges regarding their verification.

4) We report our learned lessons and the practicality of the
approach and identify open challenges and future work.

II. METHODOLOGY

To verify our SWCs and CDDs (described in subsect. III-A),
we need to (1) generate the verification environment and (2)
instrument and augment the code with static analysis results.

A. The AUTOSAR Platform

AUTOSAR uses three abstraction levels to describe the
SWCs of a system. The highest level—the Virtual Function

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-0497-3059
https://orcid.org/0000-0002-0143-632X
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/


1 int main_k_base() {
2 SWC_Init();
3
4 for(i=0; i < K; i++) {
5
6 SWC_Step();
7 assert(P);
8 }
9 }

1int main_k_step() {
2SWC_Init();
3mod_ndet_loop_variables();
4for(i=0; i < K+1; i++) {
5assume(P);
6SWC_Step();
7
8}
9assert(P); }

Fig. 2. Entry points for k-Induction experiments to prove property P

Bus (VFB)—describes types of SWCs and their connections to
other SWCs (PortInterfaces and PortPrototypes),
as well as the messages they exchange via their ports
(DataTypes). At the middle level—the RTE—the execution
behavior of SWCs, i.e., RunnableEntities and their
trigger events, are defined. Finally, at the implementation
level, these defined RunnableEntities are mapped to
their implementations (given as source or object code).

System constraints and the system configuration are de-
scribed in the ARXML format (see Fig. 3 for an example). In
the given context, the SWC Description and the RTE Extract
of the ECU Configuration are of relevance, since they describe
the messages and data-types that SWCs can exchange.

B. Generating Verification Environment

The RunnableEntities of an SWC (defined in the
corresponding ARXML model [8]) provide initialization and
step functions, which are invoked periodically in an order we
presume to be fixed (see also sect. V).

BMC focuses on checking the correctness of the program
only up to a predetermined number of iterations of each
loop, pruning all executions that require more. The entry
point of our generated test harness for BMC is a function
which, after initialization, calls the step functions of the
RunnableEntities in an (unbounded) loop.

The test harness for k-Induction1 has two entry points:
one for the base case and another for the inductive step.
Fig. 2 illustrates the principle of k-Induction: BMC is used
to establish the base case by checking whether the assertion
P holds for the first K loop iterations. Subsequently, we use
BMC to check whether P holds after K + 1 steps under the
assumption that it holds in the first K iterations starting from
an arbitrary program state. If both the base case and induction
step succeed, then P holds after any number of loop iterations.

SWCs exclusively interact with each other and with the
BSW through the RTE (see Fig. 1), and RTE ports are their
only external input [9]. We assume the correctness of the RTE
implementation and replace it with an appropriate abstraction.
This has two consequences: Firstly, it results in a smaller code
base that is more tractable for verification tools. Secondly, as
our RTE abstraction conservatively models the most general
environment of the SWC, it takes arbitrary interactions with
the environment (e.g., any communication via the RTE) into
account. This modular approach guarantees that a change in

1CBMC’s built-in support for k-Induction did not cope with the nested
loops in our SWCs, which is why we require a separate harness.

1 <IMPLEMENTATION-DATA-TYPE UUID="...">
2 <SHORT-NAME>Dt_Engine_RPM</SHORT-NAME>
3 ...
4 <COMPU-METHOD-REF DEST="COMPU-METHOD">
5 /DataTypes/CompuMethods/CM_Engine_RPM
6 </COMPU-METHOD-REF>
7 <IMPLEMENTATION-DATA-TYPE-REF DEST="...">
8 /AUTOSAR_Platform/ImplementationDataTypes/uint16
9 </IMPLEMENTATION-DATA-TYPE-REF>

10 ...
11 </IMPLEMENTATION-DATA-TYPE>
12 ...
13 <COMPU-METHOD UUID="...">
14 <SHORT-NAME>CM_Engine_RPM</SHORT-NAME>
15 ...
16 <COMPU-SCALE>
17 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
18 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">255
19 </UPPER-LIMIT>
20 <COMPU-RATIONAL-COEFFS>...</COMPU-RATIONAL-COEFFS>
21 </COMPU-SCALE>
22 ...
23 </COMPU-METHOD>

i void modif_nondet_Dt_Engine_RPM(Dt_Engine_RPM* tmp);
ii void modif_nondet_uint16(uint16* tmp);

iii Std_RetType get_nondet_Std_ReturnType();
iv Std_RetType
v Rte_Read_Engine_RPM_stub(Dt_Engine_RPM* tmp);

vi
vii void modif_nondet_Dt_Engine_RPM(Dt_Engine_RPM* tmp) {

viii modif_nondet_uint16(tmp);
ix assume(0 <= *tmp && *tmp <= 255);
x }

xi
xii Std_RetType

xiii Rte_Read_Engine_RPM_stub(Dt_Engine_RPM* tmp){
xiv modif_nondet_Dt_Engine_RPM(tmp);
xv return get_nondet_Std_ReturnType();

xvi }

Fig. 3. Parts of ARXML specification of data type Dt_Engine_RPM (above)
and an example of using it in generated RTE function stubs (below)

the environment (e.g., the deployment of other components)
does not invalidate prior verification results.

The ARXML specification [10] and the AUTOSAR meta
model [8] describe the DataTypes of messages, allowing us
to automatically generate an abstraction of the RTE communi-
cation functions. Fig. 3 depicts parts of a specification in the
ARXML format that defines data types on different abstraction
levels. Lines 7-9 state that Dt_Engine_RPM is implemented
as uint16. Lines 4-6 refer to a CompuMethod element that
specifies a range of valid values from 0 to 255 for the data
type. These limits guarantee that the computation will result
in a value representable by uint16. For a thorough definition
of data types and their constraints see [8, Sect. 5].

In our RTE abstraction parameters and return values of
RTE functions are first havoced and then constrained based
on information provided in the ARXML specification. These
constraints are automatically generated. We generate non-
deterministic modifier and generator functions that are in-
voked in the generated RTE API stubs (see, e.g., function
Rte_Read_Engine_RPM_stub in Fig. 3). Fig. 3 also
illustrates how the data constraints defined by the XML in
lines 17-18 translate into a C assumption (line viii) due to the
type Dt_Engine_RPM.



C. Static Analysis and Instrumentation of Code

As a next step, the verification target SWC source code, its
dependencies and the generated RTE stubs are built and linked
into a single object with CBMC. Though our software project
is complex and uses many architectural parameters, CBMC’s
goto-cc could seamlessly replace the compiler and linker in
our build process. We note that, in accordance with the ISO
26262 standard, our code base is written in a well-specified
and supported sub-set of the ANSI-C language.

Before starting the verification with CBMC, we perform an
upfront static analysis of the code to support and complement
the strengths of CBMC. To this end, we emit the complete
target project into a single source file and run Frama-C [11]
on the resulting code. While Frama-C provides a wide range
of static analysis techniques, we only employed its Evolved
Value Analysis (EVA [12]) plug-in, which is based on abstract
interpretation techniques. We used its default parameters that
do not rely on more advanced abstract domains. This analysis
can infer relatively small value sets for the variables (including
function pointers), which simplifies the task of CBMC, but
also provides indispensable type constraints for constructing
induction proofs in some of our k-Induction experiments. The
results of the static analysis are automatically incorporated as
assumptions constraining the values of global variables (which
represent the entire state of the system) and as replacements
of function pointers with explicit case statements.

Prior to instrumentation of the code with the constraints
provided by Frama-C, we verify (in independent k-Induction
runs) that the value sets provided by Frama-C are actually
inductive invariants. To verify the results of the function
pointer analysis, the bodies of functions that are unreachable
according to Frama-C are replaced with failing assertions
which are then checked using CBMC.

D. Implementation details

To automatically parse the ARXML specifications, RTE
headers and to generate C stubs, we relied on several openly
available Python modules (e.g. PyCParser [13], lxml [14],
and cogu-autosar [15]). Some missing POSIX stubs were
implemented manually, and we had to patch CBMC to emit
proper C code for the SWCs in our experiments.

III. CASE STUDIES

A. Component Descriptions

We analyse four AUTOSAR SWCs of an automotive soft-
ware platform that comprises of ECUs with multiple hosts. The
platform provides services such as a common time-base for the
hosts, global time-triggered scheduling, and time-triggered or
time-sensitive communication between hosts. A custom RTE
hides the fact that the underlying system is distributed and
hosted on multiple SoCs/CPUs from the Application SWCs.

LifeCycle Service Server (LCS-S) component: This com-
ponent is typically executed on the host with the highest
ASIL and implements a state machine that determines the state
(Init, Standby, Running, etc.) of each host. Running,
for instance, indicates that the platform started up successfully

and all hosts are operating under supervision. State transitions
are triggered by failing built-in self tests, or depend on the
states of other services. The LCS-S sends requests to its clients
to trigger transitions and ensures that all client hosts transition
correctly and report the expected lifecycle states.

While the LCS-S communicates with other SWCs via the
RTE, it is considered a CDD because it directly interacts with
other health- and safety-related platform services implemented
as CDDs. These interactions via non-standardized interfaces
require a few LCS-specific extensions of the verification envi-
ronment and hence knowledge about implementation details.

LifeCycle Service Client (LCS-C) component: implements
the same state machine as the LCS-S and periodically checks
whether state transitions are required or have been requested
by the LCS-S. An example for a transition requested by the
LCS-S and confirmed by the LCS-C is the power-off sequence,
where clients might store data in non-volatile memory.

Vehicle Communication Service (ApCom) component: This
Application SWC is typically either ASIL-B or D and receives
messages from the CAN bus (via the corresponding service in
the BSW) and transforms them into RTE data types. Thus, the
developers need not be aware of the underlying CAN specifics.

As ApCom utilizes only RTE and BSW COM interfaces,
it can be model checked with a generic abstraction of these
interfaces. Since large parts of the configuration and the
implementation are generated based on a mapping between the
CAN and RTE messages, the repeated (automated) verification
of this generated code is frequently necessary.

Middleware: This component is a CDD that communicates
with other hosts through a Transport Layer (e.g. Ethernet or a
time-sensitive version thereof), often relying on OS system
calls. Since the exchanged messages contain RTE data, it
requires non-standardized interaction with the RTE (such as
access to its buffer management system), which complicates
verification. While the implementation of the buffer manage-
ment is static, generated or configurable parts of the code
introduce the need for repeated analysis. Since it handles ASIL
data, the Middleware may be classified up to ASIL-D.

Table I presents some code metrics for each SWC to illus-
trate their complexity. More details are available in [7, Section
5]. The components of the LifeCycle service are simpler than
the other SWCs, with the LCS-S being the more complex one
of both due to supervision and platform initialization tasks.
The ApCom component relies heavily on calls-by-reference
and function pointers, as evidenced by the amount of pointer
arithmetic and dereference operations. Its buffer and data
frame manipulation operations make the Middleware the most
challenging component of our case study. The high complexity
metrics for ApCom and Middleware also denote the presence
of large chunks of generated code with repetitive structures
within these components.

B. Checked program properties

Our goal is to automatically detect potential errors and
vulnerabilities (expressed as assertions) in our code base. In
addition to assertions added by developers, we check the



TABLE I
CODE METRICS OF TARGET SOFTWARE COMPONENTS

LCS-C LCS-S ApCom MW.

O
pe

ra
tio

ns Pointer dereference 50 115 2222 2170
Add. & Subst. 31 129 330 3662
Mult. & Div. 36 76 898 471
Bitwise operations 10 14 11 304

C
on

tr
ol

flo
w If statements 119 243 1276 948

Loops 4 17 77 76
Function calls 129 309 1347 1328
Function returns 66 136 365 329

C
om

pl
ex

ity Lines of code 1469 4923 15973 16536
Program locations 529 1182 5935 7061
Global variables 34 94 427 584
MacCabe Cycl. Compl. 187 410 1681 1895

TABLE II
RUNNING TIMES FOR STATIC ANALYSIS OF THE TARGET SWCS

SW Comp. Frama-C EVA Slicing
Mem. (MB) Time (s) LOC (before) LOC (after)

LCS-C 1281.58 87.96 87340 1469
LCS-S 6564.27 474.04 216349 4923
ApCom 7635.43 596.77 216349 15973
Middleware 1628.26 360.34 106153 16536

properties automatically generated by CBMC (e.g. possible
arithmetic overflows, safety of pointer dereferences; see [6]).
To enable k-Induction, we instrumented our code base with the
necessary assumptions and assertions similarly to Fig. 2. In the
k-Induction experiments, we additionally checked constraints
on permissible values of variables (e.g., to identify invalid
states in the LifeCycle service). Note that defining these latter
properties is a manual step that requires insights into the
implementation details and the in-depth understanding of the
application domain, while the other introduced assertions are
automatically constructed.

C. Experiments and Results

For verification we used CBMC 5.23. All experiments were
conducted on an Intel(R) Xeon(R) CPU E5345@2.33GHz
equipped with 47.2 GB of memory, running Ubuntu 18.04.4.
For each run, we set a memory limit of 40 GB and a CPU time
limit of one hour, measured by the tool BenchExec [16].

1) Static Analysis: We introduced static analysis into our
work-flow to address three challenges. First, to avoid spurious
counter examples that were due to imprecise value analysis
(see for example our k-Induction experiments later in this
section). Second, in some of our benchmarks, due to the
imprecise value analysis of the function pointers, cycles in
the call graph led to non-termination of CBMC. Finally, the
computed call graph allows us to identify and exclude code
that is not part of the targeted code base, but is still included in
the compilation process. The difference in size (lines of codes)
before and after slicing unreachable functions in the input file
is given Table II. Hence, in our experiments static analysis is
an essential preprocessing step that provides valuable benefits.

To gain these benefits, however, an exhaustive static analysis
of the code base for each SWC is necessary. Table II presents
the running time and memory requirements of this step for
each SWC. Note that this analysis includes a precise value
analysis for every global variable and function pointer of the
code base and removes the unreachable sections of the SWCs.

2) Bounded Model Checking: We considered 5 iterations
of the loop calling the RunnableEntities of our SWCs
(cf. subsect. II-B). As most loops in automotive real-time soft-
ware are statically bounded, CBMC was able to automatically
determine bounds for most other loops. In addition, CBMC
can detect whether there exist executions that iterate the loop
more often than pretermined by the given bound, which we
used to identify loops that needed to be bounded manually (of
which there were less than 10 overall).

Table III (left) summarizes our BMC results, providing
for each SWC the number of checked assertions, memory
usage, and run-time. Though no real bugs were found, our
verification attempts revealed a modelling flaw in the ARXML
specification of the ApCom SWC. In our first verification
attempt, CBMC reported an arithmetic overflow in ApCom.
Analyzing the report showed that the ARXML specification
of the data type of one of the involved variables (whose value
was provided by our ARXML-derived RTE abstraction) was
too permissive. As the actual implementation of the RTE is
more restrictive, this overflow cannot occur in practice.

We identified a similar problem with the ARXML-derived
RTE model of the LCS-C component, which yielded a Not
Present state that is unreachable in the actual implementa-
tion. This revealed a limitation of our modular verification
approach, which lacks precise information about the states
reachable in other (abstracted) components. As before, this
bug cannot occur in the implementation.

The Middleware turned out to be too challenging to verify in
our experiments. Attempts to simplify the program (by e.g. ab-
stracting away the initialization of shared memory regions
which introduced large arrays in the resulting formulas) led
to numerous spurious error reports, rendering the approach
impractical. Since CBMC did not support some necessary
operations, our attempts to deploy a Satisfiability-Modulo-
Theory (SMT) solver as back-end also failed.

3) k-Induction: The right part of Table III presents the
results of our k-Induction experiments. The run-times are the
sum and the memory requirements are the maximum of the
two consecutive CBMC runs for the base case and induction
step (see Fig. 2). In our experiments, we observed that a
value of 1 is sufficient in all our (terminating) runs to prove
the properties, which we attribute to the auxiliary constraints
provided by the upfront static analysis. Hence, k-Induction
uses fewer resources than BMC in our setting.

Moreover, the value constraints provided by Frama-C
proved to be crucial. Our verification attempts without static
analysis led to spurious reports of out-of-bound array accesses
in the LCS-S component. This is owed to the fact that the
initial states (of the state machine) in the induction step
(Fig. 2) are arbitrary and hence potentially unreachable in



TABLE III
EXPERIMENTAL RESULTS OF BOUNDED MODEL CHECKING AND k-INDUCTION

SW Comp. Bounded Model Checking k-Induction
Assertions Memory (MB) Time (s) Outcome Assertions Memory (MB) Time (s) Outcome

LCS-C 366 1766.5 102.64 Bounded-Success 370 711.6 44.65 Success
LCS-S 1806 2072.2 135.34 Bounded-Success 1824 1334.7 91.04 Success
ApCom 15562 3406.4 157.58 Bounded-Success 15597 3184.0 292.27 Success
Middleware 9680 14635.7 3600.00 Time out 9780 10043.1 3600.0 Time out

the actual implementation. The value set information provided
by Frama-C constrains the initial states to reachable states
and strengthens our induction hypothesis. Other components
(LCS-C and ApCom) could be verified even without the use of
Frama-C. As in our BMC experiments, our attempts to verify
the Middleware timed out.

For a comparison of (an older version of) CBMC to alterna-
tive software model checking tools (such as CPAChecker [17]
and Ultimate Automizer [18]) on the presented SWCs, see [7]
(Section 6, pages 44-45).

IV. RELATED WORK

Ahmed and Safar [19] use the symbolic simulation tool
KLEE [20] to automatically extract test cases from the C
source code of an AUTOSAR BSW module. As testing of
safety-critical applications must be requirements-based [1],
generated test-cases need to be mapped to requirements. In
their CBMC-based automated testing method for the avionic
domain, Sun et al. [21] annotate the source code with low-
level requirements (expressed as pre- and post-conditions) to
establish such a mapping. Mittag [22] applies static analysis
to AUTOSAR components, focusing on comparatively simple
properties. Berger et al. [23] apply the CBMC-based verifier
BTC [24] to check automotive code generated by Simulink,
but do not address AUTOSAR. Fang et al. [25] use the
SPIN model checker to verify a hand-crafted model of an
AUTOSAR-based operating system. Westhofen [26] imple-
ments custom k-Induction on top of CBMC to efficiently
verify automotive C code.

V. DISCUSSION AND CONCLUSION

Automation was a primary goal, as it enables automated
regression verification and limits the effort for the verification
engineer. The CBMC model checker and its mature ANSI-C
support allowed to use our existing build system and largely
unmodified code base. The ARXML component descriptions
and the layered architecture of AUTOSAR made it possible
to delimit the SWCs and automate the generation of a test
harness and stubs that abstract the behaviour of the RTE.

We did, however, face challenges regarding automation,
modeling the environment, and scalability. Unlike SWCs,
CDDs are not standardized by AUTOSAR. They may use
interfaces that are not available to standardized SWCs (e.g., to
directly access peripherals). Consequently, the stubs for non-
standardized interfaces specific to a CDD need to be generated
manually. Moroever, even for SWCs, an overly abstract model
of the RTE may lead to false positives. This can be addressed

by providing a more precise model of the RTE (requiring
substantial insight into the details of the RTE) or by including
actual RTE code. The latter approach, however, amounts to
verifying the SWC in the absence of an environment.

As CBMC provides limited support for static analysis, we
combined it with an upfront run of Frama-C in order to reduce
the computational effort for the model checking – interfacing
the tools required a non-trivial implementation effort.

Preliminary experiments showed that verifying multiple,
interacting components reduces spurious bug reports. This,
however, would require to take into account all execution
schedules of the runnables, which we consider future work.
Another future work is to reuse our verification efforts of the
presented SWCs whenever a repeated analysis is necessary
(i.e. when the implementation is changed or re-configured) by
considering incremental verification techniques.

Overall, our conclusion and outlook is positive: despite
all challenges and the engineering effort required to deploy
CBMC to verify AUTOSAR components, we ultimately suc-
ceeded in checking non-trivial and realistic SWCs.

ACKNOWLEDGMENTS

This work was partially funded by the Vienna Science
and Technology Fund (WWTF) under grant NXT19-006. The
authors thank the anonymous reviewers for their valuable feed-
back and suggestions.



REFERENCES

[1] ISO/TC 22/SC 32, “ISO/DIS 26262 Road vehicles – Functional safety,”
International Organization for Standardization (ISO), Tech. Rep. 26262,
2018.

[2] W. Steiner, “Formal methods in industrial dependable systems design -
the TTTech example,” in Formal Methods in Computer-Aided Design
(FMCAD), D. Stewart and G. Weissenbacher, Eds. IEEE, 2017, p. 8.
[Online]. Available: https://doi.org/10.23919/FMCAD.2017.8102232

[3] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 27, no. 7,
2008.

[4] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, no. 4, 2009.

[5] A. Imparato, R. R. Maietta, S. Scala, and V. Vacca, “A comparative study
of static analysis tools for AUTOSAR automotive software components
development,” in International Symposium on Software Reliability En-
gineering (ISSRE) Workshops. IEEE, 2017.

[6] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, vol. 2988. Springer, 2004.

[7] T. Durand, “Model checking automotive software components,” Master’s
thesis, TU Wien, August 2020.

[8] “Software Component Template - AUTOSAR Rel.4.2.2,” Tech. Rep.
[9] “System Template - AUTOSAR Rel.4.2.2,” Tech. Rep.

[Online]. Available: https://www.autosar.org/fileadmin/user upload/
standards/classic/4-2/AUTOSAR TPS SystemTemplate.pdf

[10] “Specification of RTE - AUTOSAR Rel.4.2.2,” Tech. Rep.
[11] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and

B. Yakobowski, “Frama-C - A software analysis perspective,” in Soft-
ware Engineering and Formal Methods (SEFM), ser. LNCS, vol. 7504.
Springer, 2012.

[12] D. Bühler, “Structuring an Abstract Interpreter through Value and State
Abstractions: EVA, an Evolved Value Analysis for Frama-C.” Ph.D.
dissertation, University of Rennes 1, France, 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01664726

[13] “GitHub eliben/pycparser,” https://github.com/eliben/pycparser, ac-
cessed: 2021-05-17.

[14] “lxml - XML and HTML with Python,” https://lxml.de/, accessed: 2021-
05-17.

[15] “GitHub cogu/autosar,” https://github.com/cogu/autosar, accessed: 2021-
05-17.

[16] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: require-
ments and solutions,” Int. J. Softw. Tools Technol. Transf., vol. 21, no. 1,
2019.

[17] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in Computer Aided Verification (CAV), ser.
LNCS, vol. 6806. Springer, 2011, pp. 184–190. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1 16

[18] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, J. Hoenicke,
Y. Li, A. Nutz, B. Musa, C. Schilling, T. Schindler, and
A. Podelski, “Ultimate automizer and the search for perfect
interpolants - (competition contribution),” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), ser. LNCS,
vol. 10806. Springer, 2018, pp. 447–451. [Online]. Available:
https://doi.org/10.1007/978-3-319-89963-3 30

[19] M. Ahmed and M. Safar, “Formal verification of AUTOSAR watchdog
manager module using symbolic execution,” in International Conference
on Microelectronics (ICM). IEEE, 2018.

[20] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in Operation Systems Design and Implementation (OSDI). USENIX
Association, 2008.

[21] Y. Sun, M. Brain, D. Kroening, A. Hawthorn, T. Wilson, F. Schanda,
F. J. G. Jimenez, S. Daniel, C. Bryan, and I. Broster, “Functional
requirements-based automated testing for avionics,” in International
Conference on Engineering of Complex Computer Systems (ICECCS).
IEEE, 2017.

[22] R. Mittag, “Entwicklung statischer Analysen für AUTOSAR
Steuergerätesoftware,” Master’s thesis, TU Chemnitz, 2018.

[23] P. Berger, J. Katoen, E. Ábrahám, M. T. B. Waez, and T. Rambow,
“Verifying auto-generated C code from Simulink - an experience report

in the automotive domain,” in Symposium on Formal Methods (FM), ser.
LNCS, vol. 10951. Springer, 2018.

[24] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller, “Incremental bounded model checking for embedded
software,” Formal Aspects Comput., vol. 29, no. 5, 2017.

[25] L. Fang, T. Kitamura, T. B. N. Do, and H. Ohsaki, “Formal model-based
test for AUTOSAR multicore RTOS,” in International Conference on
Software Testing, Verification and Validation (ICST), 2012.

[26] L. Westhofen, “Verifying automotive C code using modern software
model checkers,” Master’s thesis, RWTH Aachen University, 2019.

https://doi.org/10.23919/FMCAD.2017.8102232
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TPS_SystemTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TPS_SystemTemplate.pdf
https://tel.archives-ouvertes.fr/tel-01664726
https://github.com/eliben/pycparser
https://lxml.de/
https://github.com/cogu/autosar
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-89963-3_30

	Introduction
	Methodology
	The AUTOSAR Platform
	Generating Verification Environment
	Static Analysis and Instrumentation of Code
	Implementation details

	Case Studies
	Component Descriptions
	Checked program properties
	Experiments and Results
	Static Analysis
	Bounded Model Checking
	k-Induction


	Related Work
	Discussion and Conclusion
	References

