
On Incremental Pre-processing for SMT

Nikolaj Bjørner1(�) and Katalin Fazekas2

1 Microsoft Research, Redmond, USA
nbjorner@microsoft.com

2 TU Wien, Vienna, Austria
katalin.fazekas@tuwien.ac.at

Abstract. We introduce a calculus for incremental pre-processing for
SMT and instantiate it in the context of z3. It identifies when powerful
formula simplifications can be retained when adding new constraints. Use
cases that could not be solved in incremental mode can now be solved
incrementally thanks to the availability of pre-processing. Our approach
admits a class of transformations that preserve satisfiability, but not
equivalence. We establish a taxonomy of pre-processing techniques that
distinguishes cases where new constraints are modified or constraints
previously added have to be replayed. We then justify the soundness of
the proposed incremental pre-processing calculus.

1 Introduction

Pre-processing is a central ingredient for scaling automated deduction. These
techniques apply targeted global simplification steps that can drastically reduce
the complexity of problems before search techniques that use mainly local infer-
ence steps are invoked. They are used across several solver domains, spanning
SAT, to SMT, first-order automated theorem proving, constraint programming,
and integer programming. With the exception of SAT solvers, prior techniques
do not combine well when new constraints are added incrementally to a pre-
processed state. Solvers have the option to restart pre-processing from scratch.
This model is viable if the overall number of solver calls is small compared to
time spent solving, but is not practical for scenarios where many minor varia-
tions of a set of main constraints are queried. Such scenarios may be found in
applications of dynamic symbolic execution or symbolic model checking.

A procedure to incorporate pre- and in-processing techniques [27] into incre-
mental SAT solvers was introduced in [18], where such incremental in-processing
allowed a dramatic improvement in the performance of bounded model checking
applications. In the case of SAT, the effect of a simplification step is recorded
in a reconstruction stack. Each eliminated clause is saved on that stack together
with a partial assignment, called its witness, that is used to show the redun-
dancy of the eliminated clause. For example, the redundancy of blocked clauses
are witnessed by their blocked literal, a literal that upon all resolvents are tau-
tological [26, 32]. The reconstruction stack has two very important roles in SAT
solvers. First of all, it has all the information that is necessary for model re-
construction [25]. When the elimination of a clause is not model-preserving, its

witness on the stack tells how to modify or extend any found solution of the
simplified formula such that it then satisfies the removed clause as well. Beyond
that, the reconstruction stack allows to recognize all those previous simplification
steps that are potentially invalidated by an incrementally added new constraint.
For example, literals that were blocked in the global state of the previous clauses
might not be blocked any more in the presence of some new constraints. Finding
these clauses and their cone of influence on the reconstruction stack allows to
undo only the problematic previous simplification steps, thereby allows pre- and
in-processing to be incremental [18].

Motivated by incremental in-processing SAT solvers, our goal here is to pave a
path towards a similar mechanism in the context of SMT solvers. However, SMT
problems extend propositional SAT formulas in several dimensions: the base the-
ory of SMT is the theory of equality over uninterpreted functions and predicates,
SMT formulas may contain quantifiers, and constants and functions that have
interpretations over theories. Concrete cases of incremental SMT pre-processing
was considered in [19]. While most of the formula simplification techniques of
SAT solvers are captured by well studied redundancy properties [23], such a
unified understanding and description of SMT pre-processing techniques is not
yet introduced. Though some redundancy notions of SAT solvers can be directly
embedded or generalized to SMT [30], a notion that appears to capture simplifi-
cations in SMT in many cases is that of a substitution: an uninterpreted constant
or function is defined into a solved form and the constraints are simplified based
on the solution. When new constraints, containing the solved function symbols,
are added after pre-processing, our method distinguishes between simplifications
that allow applying the substitution to the new formula or removing the substi-
tution and re-adding the old constraints that were simplified. We have found it
useful to characterize pre-processing simplifications by the following categories.

Equivalence Preserving Simplifications Many simplification methods are based
on equivalence preserving simplifications. For example x > x−y+1 simplifies to
y > 1. They are automatically incremental by virtue of not changing the set of
models. Developing equivalence preserving simplifications is a significant area of
research and engineering by itself. A good example is using and-inverter graphs
(AIGs) for simplifying propositional and first-order formulas [45, 24]. The main
challenge with developing equivalence preserving simplifications in an incremen-
tal setting is to make them efficient.

Rigid Constrained Simplifications An important class of simplifications are based
on eliminating variables by finding solutions to them. In the formula x ≤ y +
1 ∧ x ≥ y + 1 ∧ φ[x, y] we can solve for x (or y) by setting x ≃ y + 1 and then
substituting in the solution for x into φ. The simplified formula is φ[y+1, y]. The
set of models of the original formula must all satisfy the equality x ≃ y+1. This
property allows to reuse the simplification when later adding a formula ψ[x, y].
It can be added by applying the solution for x: ψ[y+1, y]. A model of φ[y+1, y]∧
ψ[y+1, y] must conversely correspond to a model of the original formulas φ[x, y]
and ψ[x, y]. The equality x 7→ y+1 is used in a model converter to establish the

original model. Some pre-processing techniques translate constraints from one
domain to another. For example, formulas over bounded integers can be solved
by translation into bit-vectors. This translation can be described with a set of
equalities where bounded integers are solved for their bit-vector representation
(see later an example in Table 1).

Under Constrained Simplifications The rigid constrained simplifications already
cover a significant class of pre-processing methods. Allowing incrementally solv-
ing for variables has a profound practical effect on using z3 incrementally in
user scenarios. There is however a larger class of simplifications that also al-
low eliminating variables but do not preserve solutions to the eliminated vari-
able. These simplifications have the same or more solutions for symbols in the
original formula and we call them under-constrained. For example, the formula
((x ≃ y ∧ y < z + u) ∨ y ≥ z · u) contains x in only one position. It can be
replaced by the formula ((b ∧ y < z + u) ∨ y ≥ z · u) where b is fresh. Similarly
introducing definitions of fresh symbols does not eliminate solutions to sym-
bols in the original formula. Lastly, when removing redundant clauses, the new
formula may have more solutions. Tseitin transformation introduces definitions
that allow removing redundant, non-CNF, formulas.

Over Constrained Simplifications Symmetry reduction [38, 14] and strengthening
using propagation redundancy criteria [37] are prominent examples of simplifica-
tions that apply strengthening to reduce the search space. These transformations
are not covered by the classes covered by our main result. We leave it to future
work to examine whether or how to incorporate strengthening: one avenue is to
leverage assumption literals [16] to temporarily enable strengthenings either as
part of pre-processing or during search [39].

Table 1 summarizes the main categories of pre-processing techniques dis-
cussed so far. This paper develops a calculus of incremental pre-processing for
rigid constrained, under-constrained, clause elimination, and introduction of def-
initions. However, it does not discuss further over-constrained simplifications.

In this paper we introduce the concept of simplification modulo substitutions
and show that the main SMT pre-processing methods maintain such a prop-
erty. Based on that, we show how to apply or revert the effect of previous pre-
processing steps when new formulas are added after simplification.

2 Preliminaries

We assume the usual notions of first-order logic with equality, satisfiability, log-
ical consequence and theory, as described e.g. in [17]. An interpretationM for a
signature Σ (or Σ-model) consists of a non-empty set UM called the universe of
the model, and a mapping ()M assigning to each variable and constant symbol
an element of UM, to each n-ary function symbol f in Σ an n-ary function fM

from Un
M to UM, and to each n-ary predicate symbol p in Σ an n-ary function

category example input example output model converter

equivalence x > x− y + 1 y > 1 ε

rigid x ≃ t, φ φ[t/x] x 7→ t

0 ≤ x ≤ 1 ∧ (x ≃ 1 ∨ y > 0) xb ∨ y > 0 x 7→ ite(xb, 1, 0)

1 ≤ x ≤ 4 ∧ (x ≃ 1 ∨ y > 0) b[2] ≃ 0 ∨ y > 0 x 7→ 1 + bv2int(b[2])

under F, ((x ≃ t ∧ φ) ∨ ψ) F, (φ[t/x] ∨ ψ) x 7→ t
x ̸∈ FV (ψ), FV (F)

F, x ≤ y, x ≤ z, y ≤ u F x 7→ min(y, z), y 7→ u
x, y ̸∈ FV (F)

def-intro (a ∧ b) ∨ c ¬xb ∨ a,¬xb ∨ b, xb ∨ c ε
redundant F,¬p ∨ ¬q, p ∨ q F,¬p ∨ ¬q p 7→ p ∨ ¬q

p is positive in F

over p(x), p(y), p(z) x ≤ y ≤ z ε
p(x), p(y), p(z)

Table 1. Main categories of pre-processing techniques found in SMT solvers. Function
ite is an abbreviation for if-then-else and bv2int is a function that maps a bit-vector
to an integer value.

from the set Un
M to distinguished values representing true and false. Note that to

keep the presentation simple, we only consider a single universe in the models.
Interpretations extend to terms by composition.

We use the terminology symbols referring to uninterpreted symbols (vari-
ables) and function symbols. Given a model M and a symbol x, the model
M[x 7→ a] is exactly the same as M, except that xM = a where a ∈ UM for
0-ary symbols and a is a function over UM for n-ary function or predicate sym-
bols.

Lemma 1 (Translation Lemma [41]). If F is a formula and t is a term
s.t. no variable in t occurs bound in F , thenM |= F [t/x] iffM[x 7→ tM] |= F .

Note that we may use λ terms to represent updates to function and predicate
symbols. The interpretation of a λ term is a function.

We denote Skolem symbols for n-ary functions (where n = 0 is possible) that
cannot occur in input formulas. Only pre-processing methods may introduce the
Skolem symbols as a guarantee that they are fresh.

Convention 1 (Variable non-capture) Throughout this paper we assume that
free and bound variables are disjoint, such that when we substitute a term t for
a variable x in formula F , none of the variables in t are captured.

Definition 1 (Labeled substitution). ⟨x← t;Ψ⟩B represents a substitution of
x by t, justified by the formula Ψ . The label B is either ⊤ or ⊥ and it indicates
whether the map x 7→ t may be used as an equal replacement of Ψ .

Example 1. The labeled substitution ⟨x ← y + 1;x ≃ y + 1⟩⊥ represents the
substitution of x by y + 1 justified by the formula x ≃ y + 1. The label ⊥ of
the substitution indicates that applying the substitution on a formula F where
x ≃ y + 1 is present does not change the set of models of the formula.

Definition 2. Given θ = ⟨x1← t1;Ψ1⟩B1⟨x2← t2;Ψ2⟩B2 . . . ⟨xn← tn;Ψn⟩Bn and
an interpretationM, we define the interpretationMθ as follows:

Mε =M
Mθ⟨x← t;Ψ⟩B = (M[x 7→ tM])θ

Definition 3. Given θ = ⟨x1← t1;Ψ1⟩B1⟨x2← t2;Ψ2⟩B2 . . . ⟨xn← tn;Ψn⟩Bn and
a formula F , we define the formula Fθ as follows:

Fε = F

F ⟨x← t;Ψ⟩Bθ = (F [t/x])θ

Informally, a sequence of substitutions θ is applied to interpretations from
right to left (i.e. backwards), while to formulas from left to right (i.e. forward).
Further, note that the translation lemma generalizes in a straight-forward way
to substitutions.

3 Incremental Pre-processing

In this section we introduce a calculus to describe incremental pre-processing for
SMT based on the following notion.

Definition 4 (Simplification modulo θ). We say that the formula F simpli-
fies to F ′ modulo θ, denoted F ⪰θ F

′ if

– If M |= F then there is a model M′ such that, M′ |= F ′ and M′ agrees
withM on all symbols that are in F or in background theories or not in F ′.

– IfM′ |= F ′ thenM′θ |= F .

It follows that simplification allows transitive chaining assuming that symbols
are not recycled.

Lemma 2 (Transitivity of simplification). Let F ⪰θ F
′ and F ′ ⪰θ′ F ′′ such

that every symbol that is both in F and F ′′ also occurs in F ′ (i.e. old symbols
are not re-introduced). Then F ⪰θθ′ F ′′.

3.1 Simplification rules

There are several possible situations where the concept of simplification modulo
substitutions can be used to capture potential simplification steps. For example,
a useful special case for simplification modulo θ is when a formula F implies an
equality x ≃ t that can then be turned into a substitution to simplify F .

Example 2. The formula isCons(x) ∧ F [x] implies ∃h, t . x ≃ cons(h, t), where
h, t are fresh variables (corresponding to the head and tail of a cons list). We may
substitute x by cons(h, t) in F [x] to eliminate x. The literal isCons(cons(h, t)) is
equivalent true and F [cons(h, t)] is a model simplification of the original formula
modulo x ≃ cons(h, t).

There are also useful special cases where a formula F does not imply an
equality x ≃ t, but the same equality may still be used to simplify F .

Example 3. In the formula F := ((x ≃ 3 ∧ x > u) ∨ y > u) ∧ u > z we can
substitute x 7→ 3 and retain simplification. The formula F simplifies to F [3/x] :=
(3 > u ∨ y > u) ∧ u > z, but F does not imply x = 3.

There are also cases where substitutions are not suitable to describe the
relation between F and F ′. It is easier to characterize these by the property that
F ′ is a proper subset of F .

Example 4. A blocked clause p∨C can be removed from a set of formulas without
changing satisfiability: F, (p∨C) ⪰p 7→p∨¬C F . If we were to substitute p by p∨¬C
everywhere in F it would weaken clauses where p occurs positively.

Finally, it is possible to accomodate cases where pre-processing introduces
definitions, such as through the unfold transformation (see Section 6.5), or by
Skolemization and Tseitin transformations.

Example 5. The Skolemization of ∀x . ∃y . p(x, y) is ∀x . p(x, fsk(x)). Here the
original quantified formula is replaced by the Skolemized formula.

We model the pre-processing performed by an SMT solver as a sequence of
abstract states where each state consists of two components: a formula F and
an ordered sequence of labeled substitutions θ. Based on the shown cases, we
formulate the following conditions for applying simplification rules in Figure 1.

Rigid :

F ∥ θ =⇒ F [t/x] ∥ θ⟨x← t;Ψ⟩⊥ if Ψ ⊆ F, x ̸∈ t, and Ψ ⇒ ∃y . x ≃ t[y]
Flex :

F, Ψ ∥ θ =⇒ F, Ψ [t/x] ∥ θ⟨x← t;Ψ⟩⊤ if x ∈ Ψ, x ̸∈ F and Ψ ⪰x7→t Ψ [t/x]
Update :

F, Ψ ∥ θ =⇒ F,Φ ∥ θ⟨x← t;Ψ⟩⊤ if F, Ψ ⪰x 7→t F,Φ

Fig. 1. A calculus for pre-processing in SMT

We formulated the side conditions that allow to identify a minimal set of
conjuncts Ψ of F involved with the solution for x. Note that a simplification
remains valid when adding conjuncts that do not contain x. The Update rule
handles broadly a set of simplifications, including proof rules from DRAT sys-
tems and introduction of definitions and Skolemization. It may be presented in
forms where Φ or Ψ or the substitution are empty. The substitution x 7→ t gener-
ally represents a tuple of symbols x replaced by terms t. To simplify presentation
we only discuss the case where x is a single symbol and we elide rules that pre-
serve equivalence. The Update rule records Ψ so it can later be re-added in case
a new constraint mentions x. This may be overkill when Φ[t/y] = Ψ for y fresh

(in Section 4 we will show another rule, Invert, that adds only the equality
y ≃ t in such cases).

Lemma 3. If F ⇒ ∃y . x ≃ t[y], s.t. y ̸∈ F , x ̸∈ t, and t is substitutable for x
in F , then F ⪰x7→t F [t[y]/x].

Proof. Let M be an interpretation s.t. M |= F . Then M |= F ∧ ∃y . x ≃ t[y]
and by definition of the satisfaction relation, there must exists an a ∈ UM,
s.t.M[y 7→ a] |= F ∧ x ≃ t[y]. LetM′ noteM[y 7→ a]. FromM′ |= F ∧ x ≃ t[y]
follows that xM

′
= t[y]M

′
and so FM

′
= F [t[y]/x]M

′
. SinceM′ |= F , we have

that M′ |= F [t[y]/x]. For the other direction, when M′ |= F [t[y]/x], due to
Lemma 1,M′[x 7→ t[y]M

′
] |= F . Hence, F ⪰x 7→t F [t[y]/x]. ⊓⊔

Corollary 1. The side-condition for Rigid implies that F ⪰x 7→t F [t/x].

Lemma 4. Assume Ψ ⊆ F, x ̸∈ F \Ψ and Ψ ⪰x 7→t Ψ [t/x], then F ⪰x 7→t F [t/x].

Proof. Since x ̸∈ F , (F \ Ψ) = (F \ Ψ)[t/x], thus (F \ Ψ) ⪰x 7→t (F \ Ψ)[t/x].
Then, from Ψ ⪰x 7→t Ψ [t/x] follows that F ⪰x 7→t F [t/x].

Lemma 3 established that the side-condition for Rigid ensures simplification
modulo θ. We therefore have the following corollaries.

Corollary 2. If a formula F ′ is derived from F by the inferences from Figure 1,
then it has the property F ⪰x 7→t F

′.

The other rules enforce preservation of satisfiability in their side-conditions.

Corollary 3. The rules from Figure 1 preserve satisfiability.

The transitive application of the simplifications also preserve satisfiability in
a way that extends the notion of simplification modulo a substitution.

Proposition 1. Consider a formula F0 and a state F ∥ θ derived from F0 ∥ ε
using the rules from Figure 1. Then F0 ⪰θ F .

Proof. It follows as Corollary 2 notes that each application of a rule from Figure 1
is a simplification modulo and Lemma 2 notes that simplification modulo is
transitive.

Informally, Proposition 1 means that using θ, one can transform any model
of the simplified formula into a model of the original input formula. Note that
the simplified F may contain fresh Skolem symbols that are not occurring in F0.

3.2 Pre-processing Replay

Rules of Fig. 1 captured possible pre-processing steps that can be applied on
a single SMT problem. We now describe the scenario where we add additional
constraints Φ to a pre-processed state. Without incremental pre-processing we
have the option to conjoin Φ to the original formula F0 and re-run pre-processing.

The goal of incremental pre-processing is to retain as much of the effect of
previous work as possible.

We will show that for pre-processing steps derived by rule Rigid it is possible
to apply the corresponding substitution to Φ directly, while the other simplifica-
tion steps may require to re-introduce formulas that were previously removed.
We call this process of applying the effect of simplifications on a new formula
as pre-processing replay. Figure 2 shows an imperative implementation of pre-
processing replay.

Replay (formula Φ, substitution sequence θ = σ1, . . . σn)

1 θ′ := ⟨⟩
2 for ⟨xi← ti;Ψi⟩Bi from σ1 to σn

3 if xi ∈ FV (Φ) then

4 if Bi = ⊤ then // substitution is not Rigid

5 Φ := Φ ∪ Ψi // re-introduce

6 else

7 Φ := Φ[ti/xi] // apply

8 θ′ := θ′⟨xi← ti;Ψi⟩Bi

9 else

10 θ′ := θ′⟨xi← ti;Ψi⟩Bi

11 return ⟨Φ, θ′⟩

Fig. 2. Algorithm Replay

Our main proposition summarizes the main property of Replay and ensures
that an arbitrary formula Φ can be added mid-stream after pre-processing.

Proposition 2. Let F ∥ θ be a state resulting from pre-processing F0, and let
F ∧ Φ′ ∥ θ′ be a state produced by applying procedure Replay to Φ and θ, then
F0 ∧ Φ is equi-satisfiable to F ∧ Φ′.

To establish Proposition 2 we will introduce a calculus for reverting the effect
of simplifications. It is shown in Figure 3 and comprises of two rules, one for
adding a formula with a substitution to F , the other both reverts the effect of
a simplification and adds the reverted formula to F . The inferences rely on a
side-condition that the formulas Φ, Ψ are clean relative to the substitution θ.

Definition 5. A formula Φ is clean w.r.t. a substitution sequence θ iff

– θ = ε, or
– θ = ⟨x← t;Ψ⟩Bθ′, x ̸∈ Φ and Φ is clean with respect to θ′, or
– θ = ⟨x← t;Ψ⟩⊥θ′ and Φ[t/x] is clean with respect to θ′.

Thus, intuitively, Φ is clean w.r.t. θ if Φθ uses only Rigid substitutions from θ.

Add :
F ∥ θ =⇒ F,Φθ ∥ θ if Φ is clean w.r.t. θ
Undo :
F ∥ θ0⟨x← t;Ψ⟩Bθ =⇒ F, Ψθ ∥ θ0θ if Ψ is clean w.r.t. θ

Fig. 3. A calculus for reverting pre-processing. Undo reverts a simplification by re-
introducing a constraint. It prunes θ until Add applies for a new constraint Φ.

We now establish that formulas that are clean relative to θ can be added
(after substitution) to formulas while maintaining models. The substitution used
in rigid updates corresponds to equalities that are consequences.

Lemma 5. Given a state F ′ ∥ θθ′ derived from the state F ∥ θ and formula Φ
that is clean with respect to θ′, then F ∧ Φ ⪰θ′ F ′ ∧ Φθ′.

Proof. We examine the two directions.

– Let M |= F ∧ Φ. Induction on the length of the derivation from F to F ′

establishes that if M |= F , then there is a corresponding M′ such that
M′ |= F ′ ∧

∧
(x7→t)∈θ′ x ≃ t: Each time Rigid is applied a new equality is

used for simplification F1[t1/x1]. The equality can be added to the result,
F1[t1/x1]∧x1 ≃ t1 without changing satisfiability because x1 does not occur
in F1[t1/x1]. Thus, the resulting modelM′ can be constrained to satisfy all
equalities used in rigid substitutions. SinceM′ |= Φ already, thenM′ |= Φθ′.

– LetM′ |= F ′ ∧ Φθ′. Then from the assumption of simplification modulo θ′,
we getM′θ′ |= F . Lemma 1 ensuresM′θ′ |= Φ. Thus,M′θ′ |= F ∧ Φ.

The correctness of the Add rule is now immediate:

Corollary 4. Let F ∥ θ be derived from F0 ∥ ε, and Φ clean with respect to θ,
then F0 ∧ Φ simplifies modulo θ to F ∧ Φθ.

Proof. It follows from Lemma 5.

With Proposition 1 we established that Rigid, Flex and Update maintain
F0 ⪰θ F . We need to show that also for rule Undo. The first step is to establish
that the formula removed by each of the pre-processing rules can be re-added
without affecting simplification.

Lemma 6. Given an inference F ∥ θ =⇒ F ′ ∥ θ⟨x← t;Ψ⟩B by either of the
rules Rigid, Update, Flex the formula F simplifies to F ′, Ψ modulo ε.

Proof. The proof is by case analysis by the rule that is applied.

– Flex: Then F ′ = F [t/x], Ψ ⊆ F and therefore F ′ ∧ Ψ = F ∧ Ψ [t/x]. From
the side condition Ψ ⪰x 7→t Ψ [t/x] every model of F there is a model of Ψ [t/x]
that agrees with symbols from F . Conversely F ′, Ψ properly contains F and
therefore implies it. Therefore, F ⪰ε F

′, Ψ .

– Update: We want to show that F, Ψ simplifies to F, Ψ, Φ modulo ε. The
premise of Update ensures that for everyM |= F, Ψ there is a model agree-
ing withM on symbols in F, Ψ , that satisfies F,Φ. Since interpretation of the
symbols in Ψ is unchanged it also satisfies Ψ . Conversely, if M′ |= F, Ψ, Φ,
then alreadyM′ |= F, Ψ and thereforeM′ε |= F, Ψ .

– Rigid: We wish to establish that F ⪰ε F
′, Ψ . First observe that F ′, Ψ =

F, Ψ [t/x]. Since Ψ implies the equation ∃y . x ≃ t, every model of F implies
there is a solution to y such that Ψ [t/x] that agrees with the variables in F .
Conversely, if F, Ψ [t/x] is satisfied byM′, thenM′ already satisfies F .

Lemma 7. Given F ∥ θ⟨x← t;Ψ⟩Bθ′ =⇒Undo F, Ψθ′ ∥ θθ′, s.t. F0 ⪰θ⟨x←t;Ψ⟩Bθ′

F , then F0 ⪰θθ′ F, Ψθ′ holds.

Proof. Given an inference F1 ∥ θ =⇒ F2 ∥ θ⟨x← t;Ψ⟩B. Lemma 6 establishes
that the formula F1 simplifies to F2, Ψ modulo ϵ. Lemma 5 establishes that F2, Ψ
simplifies to F, Ψθ′ modulo θ′. Chaining the definition of simplification modulo
transitively establishes the lemma.

With Corollary 4 and Lemma 7 we have then established Proposition 2.
It is worth examining why the side-conditions for simplification modulo are

used. As the following example shows, transformations that only preserve satis-
fiability but strengthen formulas cannot be used easily in an incremental setting.

Example 6. Let F0 be the satisfiable formula x ≃ y ∧ y ≤ z ∧ z ≃ v. In that
formula x, y are equal, and z, v are equal. Lets assume that we simplify via
the solution where the classes are merged (i.e. where y ≃ z). It is satisfiability
preserving. It suggests a transformation that we call Flex†.

x ≃ y ∧ y ≤ z ∧ z ≃ v ∥ ε
x ≃ z ∧ z ≃ v ∥ ⟨y←z; (x ≃ y ∧ y ≤ z)⟩⊤ Flex†

The resulting state is still satisfiable. Now Undo can be applied without any
problems. The result is still satisfiable, but not equivalent to F0 (does not have
the models where the two equivalence classes are not merged).

x ≃ z ∧ z ≃ v ∥ ⟨y←z; (x ≃ y ∧ y ≤ z)⟩⊤

(x ≃ y ∧ y ≤ z) ∧ x ≃ z ∧ z ≃ v ∥ ε Undo

Adding the constraint y ≃ z − 1 to F0 would be satisfiable, but adding it to our
formula is unsatisfiable.

4 Simplifcation Methods

Many simplification methods used in practice during pre-processing are equiv-
alence preserving. These methods include formula rewriting, constant propa-
gation, NNF conversion, quantifier elimination, and bit-blasting. They do not
require the methodology from this paper and have been integral in Z3 since its
inception. We will here discuss main simplification pre-processing routines that
do not preserve equivalence and how they relate to our taxonomy.

4.1 Equality Solving

One of the most useful pre-processing techniques eliminates symbols when they
can be solved, that is, a constraint implies an equality x ≃ t, where t is a
term that does not contain x. Equality solving corresponds to finding unitary
solutions to unification problems modulo theories. Most uses of equality solving
are captured by transformations justified by rule Rigid. In Z3, equality solving
comprises of a two stage process:

1. Extract a set of solution candidates E implied by the current formula φ.
2. Extract from E a subset of solutions that can be oriented without introducing

cyclic dependencies.

To elaborate, let E be a set of solution candidates x1 = t1, . . . xn = tn. The
candidates may contain multiple equalities using the same symbol. For example,
E could be x = f(x), x = g(y), y = h(z). We can’t use the solution x = f(x)
because x already occurs in f(x). But we can use the solution x = g(y), y = h(z)
processed in this order as first x is replaced by g(y), then y is replaced by h(z). In
the second stage we extract from E a subset of equalities xi1 = ti1 , . . . , xik = tik ,
where xij are distinct and tij are terms such that xij ̸∈ tij′ for j ≤ j

′. The subset
is in triangular form.

Example 7. We illustrate two application of Rigid for eliminating two symbols
from three equations. The choice of the first two equations is arbitrary. An
alternative simplification could choose to eliminate x and z instead. It is not
possible, however, to eliminate all three variables.

F, x ≃ y + 1, y ≃ z + 1, z ≃ f(x) ∥ θ =⇒Rigid

F [y + 1/x], y ≃ z + 1, z ≃ f(y + 1) ∥ θ⟨x←y + 1;x ≃ y + 1⟩⊥ =⇒Rigid

F [y+1/x, z+1/y], z ≃ f(z+2) ∥ θ⟨x←y+1;x ≃ y + 1⟩⊥⟨y←z + 1; y ≃ z + 1⟩⊥

The set of unification modulo theories facilities used in Z3 is based on ex-
tracting simple definitions. Foremost, for a conjunct x ≃ t of φ, where x is
uninterpreted, x ̸= t, include the equality candidate x ≃ t. Other equality candi-
dates are included from formulas of the form ite(c, x ≃ t, x ≃ s) and arithmetic
equalities of the form x + s ≃ t, such that x ≃ t − s is a solution candidate
for x. Note that solution candidates are not necessarily unique for an equality.
The constraint x + y ≃ t can be used as solution to both x and y. If x has a
nested occurrence within t, the solution for y, but not x, can be used. Equal-
ity solving interacts with simplification pre-processing: equalities over algebraic
data-types can be assumed to be in decomposed form already since rewriting
simplification decomposes equalities of the form cons(h1, t1) ≃ cons(h2, t2) into
h1 ≃ h2 ∧ t1 ≃ t2. Equality solving can be extended modulo theories in several
directions. Arithmetical equalities can be extracted from Diophantine equations
solving and polynomial equality factorization as part of establishing a Gröbner
basis. Equalities can be extracted from inequalities [6, 31], other theories, such as
the theory of arrays allow extracting solutions from equalities store(a, i, v) ≃ t,

where a is a symbol that does not occur in t, i, v, as a ≃ store(t, i, w), to-
gether with the constraint select(t, i) ≃ v, where w is fresh. We leave a study
of the cost/benefits of these approaches within the context of incremental pre-
processing to future work.

Equality solving is extended to sub-formulas in the following way: When a
positive sub-formula implies an equality x ≃ t and the symbol x does not occur
outside of the sub-formula then x can be replaced by t within the subformula.
The solution is no longer rigid constrained but can be justified by Flex.

Example 8. Suppose x ̸∈ F, Ψ , then we can use Flex to justify the simplification

F, (x ≃ t ∧ Φ[x]) ∨ Ψ ∥ θ =⇒Flex F,Φ[t] ∨ Ψ ∥ θ⟨x← t; (x ≃ t ∧ Φ[x]) ∨ Ψ⟩⊤

4.2 Unconstrained sub-terms

Symbols that have a single occurrence in a formula may be solved for based on
context. For example, with the formula x ≤ y, y < z, z ≤ u, p(u), q(u), the con-
stant x can be eliminated by using the solution x ≃ y. Then y can be eliminated
by setting y ≃ z − 1, and finally z ≃ u.

Invertibility of unconstrained symbols (see e.g. [8, 7]) in an incremental set-
ting for bit-vectors was introduced in [19]. The method implements the following
proof-rule, exemplified for the term x+ t, containing the only occurrence of x.

Invert :
F [x+ t] ∥ θ =⇒ F [y] ∥ θ⟨x←y − t; y ≃ x+ t⟩⊤ if x occurs uniquely in F

y is fresh

To justify rule Invert in our setting, it suffices to check the condition from
Lemma 6. Alternatively, we can use the generic rule Update when applying un-
constrained simplifications. The rule Invert is more efficient than usingUpdate
because the latter requires adding back an entire conjunction Ψ where the in-
vertible term x + t occurs. Invertibility can also be used to justify elimination
of nested definitions. For a definition F ∧ ((x ≃ t ∧ Φ[x]) ∨ Ψ) (see Example 8),
where x ̸∈ F, Ψ can first be rewritten as F ∧ ((x ≃ t ∧ Φ[t]) ∨ Ψ). Then x ≃ t
is invertible because it contains the only occurrence of x. The new constraint is
F ∧ ((y ∧ Φ[t]) ∨ Ψ) where y is a fresh Boolean symbol.

Invertibility conditions are theory dependent. Figure 4 exemplifies main in-
vertibility conditions for arithmetic3.

Z3 uses a heap ordered by occurrence counts to identify candidates for invert-
ibility. It first processes all symbols with occurrence count 1. If it is possible to
eliminate a symbol with occurrence count 1, the occurrence counts of sub-terms
under the term that gets eliminated are decreased. The elimination process stops
once the heap only contains symbols with occurrence counts above 1.

3 A summary of rules used for other theories can be found online:
https://microsoft.github.io/z3guide/docs/strategies/summary#tactic-elim-uncnstr

F [t− x] ∥ θ =⇒Invert F [y] ∥ θ⟨x← t− y; y ≃ t− x⟩⊤
F [x · x′] ∥ θ =⇒Invert F [y] ∥ θ⟨x, x′←y, 1; y ≃ x · x′⟩⊤
F [x ≤ t] ∥ θ =⇒Invert F [y] ∥ θ⟨x← ite(y, t, t+ 1); y ≃ x ≤ t⟩⊤
F [t ≤ x] ∥ θ =⇒Invert F [y] ∥ θ⟨x← ite(y, t, t− 1); y ≃ t ≤ x⟩⊤

Fig. 4. Invertibility rules for symbols x, x′ that occur uniquely in F ; y is fresh.

4.3 Symbol Elimination and Macros

SAT solvers use symbol elimination [15] to simplify clauses. The first-order ver-
sion [11] remains timely in more recent works as well [28]. A predicate p can be
eliminated if it occurs at most once in every clause either positively or negatively.
Clauses that contain p are replaced by resolvents by applying binary resolution
exhaustively, and then remove clauses containing p.

Example 9. We illustrate symbol elimination for the ground case with two clauses,
and F such that p ̸∈ F , as an instance of the Update rule.

F, p(t) ∨ Φ,¬p(s) ∨ Ψ ∥ θ =⇒Update

F, s ̸≃ t ∨ Φ ∨ Ψ ∥ θ⟨p←λx . p(x) ∨ (x ≃ t ∧ ¬Φ); p(t) ∨ Φ,¬p(s) ∨ Ψ⟩⊤

The same elimination technique can also be applied to Horn clauses where
p does not occur both in the head and body of any rule. A solution for the
eliminated predicate is a conjunction of the upper bounds for p or a disjunction
of lower bounds for p. It is generally a quantified formula. If the involved clauses
admit quantifier free interpolants, the solution can also be computed using an
interpolant from a solution to the reduced system [4]. Thus, the term t in a
substitution x 7→ t may only be computed after an initial model is known.

There are many cases where symbols can be eliminated incrementally and
justified by the Rigid rule:

– Macros ∀x . f(x) ≃ t[x], ∀x . f(x) + s ≃ t are handled as ∀x . f(x) ≃
t − s, assuming f is not free in s, t. Then replace occurrenes f(a) by t[a],
respectively t[a]− s[a].

– Quasi macros ∀x, y . f(x, y, x+ y) ≃ t[x, y], then replace f(a, b, c) by ite(c ≃
a+ b, t[a, b], f ′(a, b, c)), assuming f ̸∈ t.

– Conditional macros ∀x . f(x) ≃ t[x]∨C[x], then replace f(a) by ite(C[a], f ′(a),
t[a]), where f ̸∈ t, C.

– (f(x) ≃ t) ≡ ψ, where f ̸∈ t, ψ. Then replace f(a) by ite(ψ, t, f ′(a)) and add
the clause ∀x . f ′(x) ̸≃ t.

Macro elimination can be extended to ordered structures and in combination
of theories [42]. It has been integral to making quantified reasoning with bit-
vectors [44] practical. We claim that first-order in-processing rules based on
blocked clauses, asymmetric tautology elimination, covered clauses known from
SAT [29] can also be captured by Update. We substantiate the claim with an
example, but leave a comprehensive treatment for future work:

Example 10. Consider the clause C := p(x) ∨ q(x) and F := ¬p(x) ∨ p(f(x)) ∨
r(x),¬p(x) ∨ p(f(x)) ∨ p(g(x)). The variable x is universally quantified. Then
C can be rewritten to p(x) ∨ q(x) ∨ p(f(x)) without affecting satisfiability. The
covered literal p(f(x)) was added to C as it occurs in every resolvent with p(x).
The model for p has to be fixed, however. The model update is a first-order
lifting of the propositional case.

F, p(x) ∨ q(x) ∥ θ =⇒Update

F, p(x) ∨ q(x) ∨ p(f(x)) ∥ θ⟨p←λx . p(x) ∨ p(f(x));∀x . p(x) ∨ q(x)⟩⊤

To illustrate unification constraints in model updates, consider the clause C :=
p(h(x)) ∨ q(x) and p′ := λx . p(x) ∨ ∃y . x ≃ h(y) ∧ ¬q(y):

F, p(h(x)) ∨ q(x) ∥ θ =⇒Update

F, p(h(x)) ∨ q(x) ∨ p(f(h(x))) ∥ θ⟨p←p′;∀x . p(h(x)) ∨ q(x)⟩⊤

5 Implementation

We have implemented incremental pre-processing as an integral component of a
new SMT solver, part of Z3. It can be enabled by setting the option sat.smt=true
from the command line. It includes simplification by equality solving, elimina-
tion of uninterpreted sub-terms and macro detection as described in Section 44.
The primary reason for supporting incremental pre-processing has been usabil-
ity. GitHub issues pointing to performance cliffs when switching to incremental
mode are recurrent. A distilled example where pre-processing can solve formulas
is as follows:

Example 11. Consider the benchmark.

(set-option :unsat_core true) (set-option :sat.smt true)

(declare-const exp Int) (push)

(assert (! (= exp 1) :named assumption))

(assert (not (= 2 (^ 2 exp)))) (check-sat) (get-unsat-core)

The legacy solver of z3 cannot solve it because it only knows about constant fold-
ing when expanding the definition of exponentiation (the symbol ^). With incre-
mental propagation, the equality (not (= 2 (^ 2 exp))) simplifies to false.

Simplifiers interoperate with user scopes: SMT solvers support scoping using
operations push and pop. All assertions made within a push are invalidated
by a matching pop. To allow simplifiers to inter-operate with recursive function
definitions they track symbols used in the bodies of recursive functions as frozen.
Those symbols are excluded from solving. Similar to CaDiCaL’s implementation
for replaying clauses (see [18]), our implementation of Replay stores the domain
of θ in a hash-set to bypass processing formulas that have no symbols in θ.

4 See https://microsoft.github.io/z3guide/docs/strategies/simplifiers for a summary
of simplifiers.

6 Related Work

6.1 Pre- and in-processing for SAT and QBF

Pre-processing for SAT has received significant attention with the milestone
work in Satelite [15] and then using notions of blocked clauses [27] and solution
reconstruction [25]. Pre-processing techniques for QBF are discussed for example
in [3, 22]. The main pre-processing methods for propositional satisfiability solvers
can be captured using our ruleUpdate (see Example 4 for an instance of blocked
clause elimination simplification). For the case where ¬p∨D is a blocked clause,
the model update is the de-Morgan dual: removing ¬p ∨D triggers the update
M[p 7→ (p ∧D)M].

The work [18] introduces an inference system that also addresses redundant
clauses and represents model updates using a notion of witness labeled clauses.
The semantic content of the rules used for SAT are captured by Update. How-
ever, we elided tracking redundant clauses in this work. The case for SMT mo-
tivate specialized rules Rigid, Flex and Invert.

6.2 Pre-processing for SMT

Pre-processing simplification is integral in all main SMT solvers, including [33, 2].
Incremental pre-processing with special attention to bit-vectors was introduced
in [19]. Transformations considered in this thesis can be represented by theRigid
and Invert rules. Z3 exposes pre-processing simplifications as tactics [13] and
allows users to compose them to suit specific needs of applications.

Invertibility conditions are used in [34] to guide local search. This work con-
siders also a candidate value of all symbols. For example, F [x · t] is invertible to
F [y] if t evaluates to 1.

6.3 Pre-processing for MIP

Pre-solving is terminology for pre-processing for mixed-integer linear program-
ming solvers. There is a significant repertoire of pre-solving methods integrated
in leading MIP solvers. Their effects are well documented in the newer survey
[1], which provides an updated perspective to [20]. Pre-solving was developed
earlier in [40]. The main methods can be categorized as operating on single rows
(single constraints) or single columns (single variables), multiple rows, and mul-
tiple columns, and use global information about the tableau. They include also
methods known from other domains, such as literal probing also found in SAT
solvers, and symmetry reduction for sparse systems [38]. We are not aware of
under-constrained simplifications used in mainstream MIP solvers. Only symme-
try reduction stands out as outside the scope of incremental pre-solve methods.

Example 12. Pre-processing that combines two rows or combines two columns
relies on efficient indexing [21] to be effective. The two column non-zero can-
cellation method considers the situation where the coefficients to two variables

maintain a high degree of correlation. Consider the following formula

2x+ 4y + z ≤ 5 ∧ x+ 2y + u ≤ 6 ∧ 3x+ y + z ≤ 3 ∧ φ where x, y ̸∈ φ.

The coefficients to x, y in the first two inequalities are related by the affine
relation given by λ = 2. In this case the system can be reformulated, justified
by rule Rigid, by introducing a fresh variable v and using the inequalities

2v + z ≤ 5 ∧ v + u ≤ 6 ∧ 3v − 5y + z ≤ 3 ∧ φ.

6.4 Pre-processing in first- and higher-order provers

Pre-processing is also an important part of first-order theorem provers. Tech-
niques for creating small clausal normal forms have long attracted attention [35].
Main simplifications [24] are based on detecting definitions similar to what is de-
scribed in Section 4.3, but with the extra twist of ensuring that simplifications
preserve first-order decidability, such as ensuring that formulas remain within the
EPR fragment. Furthermore a variant of AIGs with nodes representing quanti-
fiers are used to detect shared structure. While [24] is only concerned establishing
preservation of satisfiability we note that the classification as model equivalent
from Section 4.3 extends to the cases considered. In-processing inspired by SAT
was pursued for first-order [29, 43] and recently for higher-order settings [5].

6.5 Constrained Horn Clauses

Constrained Horn Clauses [4], enjoy a tight connection with Logic Program-
ming where several transformation techniques were developed [10, 12], including
incremental consequence propagation [36]. Fold [9] transformations introduce
auxiliary predicates and rules that correspond to replacing a code-block with
an auxiliary procedure. It is justified by Rigid. Unfold transformations can be
justified by Update and correspond to macro elimination.

7 Summary

We introduced a calculus of pre-processing for SMT. It distinguishes simplifi-
cations that are rigid and so can be applied to new formulas as substitutions.
Other simplified formulas may need to be re-introduced similar to re-introducing
removed clauses in SAT. We examine several of the pre-processing methods stud-
ied in SAT, ATP, MIP and SMT as instances of the calculus. We leave empirical
and algorithmic studies of new pre- and in-processing methods to future work.
Another angle we have left on the table is reconciling pre-processing with in-
processing. For SAT, it was useful to develop a calculus that accounted for both
irredundant and redundant clauses. In our current effort we have set this angle
aside in favour of establishing main properties on replaying substitutions.

Acknowledgment Thanks to the reviewers for their extensive constructive
feedback and to Diego Olivier Fernandez Pons for introducing us to MIP pre-
solving. The research was partially funded by the Austrian Science Fund (FWF)
under project No. T-1306.

References

1. Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter
Weninger. Presolve reductions in mixed integer programming. INFORMS J. Com-
put., 32(2):473–506, 2020.

2. Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lach-
nitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz,
Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and industrial-strength SMT
solver. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, volume 13243 of Lecture Notes in Computer Science, pages 415–442. Springer,
2022.

3. Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for
QBF. In Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans, editors, Automated
Deduction - CADE-23 - 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture
Notes in Computer Science, pages 101–115. Springer, 2011.

4. Nikolaj S. Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Ry-
balchenko. Horn clause solvers for program verification. In Lev D. Beklemishev,
Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner, and Wolfram Schulte, ed-
itors, Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on
the Occasion of His 75th Birthday, volume 9300 of Lecture Notes in Computer
Science, pages 24–51. Springer, 2015.

5. Jasmin Blanchette and Petar Vukmirović. Sat-inspired higher-order eliminations,
2023.

6. Martin Bromberger and Christoph Weidenbach. New techniques for linear arith-
metic: cubes and equalities. Formal Methods Syst. Des., 51(3):433–461, 2017.

7. Robert Brummayer. Efficient SMT solving for bit vectors and the extensional
theory of arrays. PhD thesis, Johannes Kepler University of Linz, 2010.

8. Roberto Bruttomesso. RTL Verification: From SAT to SMT(BV). PhD thesis,
University of Trento, 2008.

9. Rod M. Burstall and John Darlington. A transformation system for developing
recursive programs. J. ACM, 24(1):44–67, 1977.

10. Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. Horndroid: Practical
and sound static analysis of android applications by SMT solving. In IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pages 47–62. IEEE, 2016.

11. Martin Davis and Hilary Putnam. A computing procedure for quantification the-
ory. J. ACM, 7(3):201–215, 1960.

12. Emanuele De Angelis, Fabio Fioravanti, John P. Gallagher, Manuel V.
Hermenegildo, Alberto Pettorossi, and Maurizio Proietti. Analysis and transforma-
tion of constrained horn clauses for program verification. CoRR, abs/2108.00739,
2021.

13. Leonardo Mendonça de Moura and Grant Olney Passmore. The strategy challenge
in SMT solving. In Maria Paola Bonacina and Mark E. Stickel, editors, Automated
Reasoning and Mathematics - Essays in Memory of William W. McCune, volume
7788 of Lecture Notes in Computer Science, pages 15–44. Springer, 2013.

14. David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
Exploiting symmetry in SMT problems. In Nikolaj S. Bjørner and Viorica Sofronie-
Stokkermans, editors, Automated Deduction - CADE-23 - 23rd International Con-
ference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011.
Proceedings, volume 6803 of Lecture Notes in Computer Science, pages 222–236.
Springer, 2011.

15. Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable
and clause elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and
Applications of Satisfiability Testing, 8th International Conference, SAT 2005, St.
Andrews, UK, June 19-23, 2005, Proceedings, volume 3569 of Lecture Notes in
Computer Science, pages 61–75. Springer, 2005.

16. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8,
2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

17. Herbert B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
18. Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental inprocessing in

SAT solving. In Mikolás Janota and Inês Lynce, editors, Theory and Applications
of Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019,
Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture Notes in
Computer Science, pages 136–154. Springer, 2019.

19. Anders Franzén. Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem
and Some Extensions to SMT. PhD thesis, University of Trento, Italy, 2010.

20. Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Miltenberger, and
Dieter Weninger. Progress in presolving for mixed integer programming. Math.
Program. Comput., 7(4):367–398, 2015.

21. Patrick Gemander, Weikun Chen, Dieter Weninger, Leona Gottwald, Ambros M.
Gleixner, and Alexander Martin. Two-row and two-column mixed-integer presolve
using hashing-based pairing methods. EURO J. Comput. Optim., 8(3):205–240,
2020.

22. Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. squeezebf: An effective
preprocessor for qbfs based on equivalence reasoning. In Ofer Strichman and Stefan
Szeider, editors, Theory and Applications of Satisfiability Testing - SAT 2010, 13th
International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Proceed-
ings, volume 6175 of Lecture Notes in Computer Science, pages 85–98. Springer,
2010.

23. Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof
systems. J. Autom. Reason., 64(3):533–554, 2020.

24. Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov.
Preprocessing techniques for first-order clausification. In Gianpiero Cabodi and
Satnam Singh, editors, Formal Methods in Computer-Aided Design, FMCAD 2012,
Cambridge, UK, October 22-25, 2012, pages 44–51. IEEE, 2012.

25. Matti Järvisalo and Armin Biere. Reconstructing solutions after blocked clause
elimination. In Ofer Strichman and Stefan Szeider, editors, Theory and Appli-
cations of Satisfiability Testing - SAT 2010, 13th International Conference, SAT
2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes
in Computer Science, pages 340–345. Springer, 2010.

26. Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 16th International Conference, TACAS 2010,

Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015
of Lecture Notes in Computer Science, pages 129–144. Springer, 2010.

27. Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard
Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning - 6th In-
ternational Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, volume 7364 of Lecture Notes in Computer Science, pages 355–370.
Springer, 2012.

28. Zurab Khasidashvili and Konstantin Korovin. Predicate elimination for prepro-
cessing in first-order theorem proving. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th Inter-
national Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710
of Lecture Notes in Computer Science, pages 361–372. Springer, 2016.

29. Benjamin Kiesl and Martin Suda. A unifying principle for clause elimination in
first-order logic. In Leonardo de Moura, editor, Automated Deduction - CADE 26 -
26th International Conference on Automated Deduction, Gothenburg, Sweden, Au-
gust 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science,
pages 274–290. Springer, 2017.

30. Benjamin Kiesl, Martin Suda, Martina Seidl, Hans Tompits, and Armin Biere.
Blocked clauses in first-order logic. In Thomas Eiter and David Sands, editors,
LPAR-21, 21st International Conference on Logic for Programming, Artificial In-
telligence and Reasoning, Maun, Botswana, May 7-12, 2017, volume 46 of EPiC
Series in Computing, pages 31–48. EasyChair, 2017.

31. Zachary Kincaid, Nicolas Koh, and Shaowei Zhu. When less is more: Consequence-
finding in a weak theory of arithmetic. Proc. ACM Program. Lang., 7(POPL):1275–
1307, 2023.

32. Oliver Kullmann. On a generalization of extended resolution. Discret. Appl. Math.,
96-97:149–176, 1999.

33. Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J. Satisf. Boolean
Model. Comput., 9(1):53–58, 2014.

34. Aina Niemetz, Mathias Preiner, and Armin Biere. Precise and complete propaga-
tion based local search for satisfiability modulo theories. In Swarat Chaudhuri and
Azadeh Farzan, editors, Computer Aided Verification - 28th International Con-
ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I,
volume 9779 of Lecture Notes in Computer Science, pages 199–217. Springer, 2016.

35. Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal
forms. In John Alan Robinson and Andrei Voronkov, editors, Handbook of Auto-
mated Reasoning (in 2 volumes), pages 335–367. Elsevier and MIT Press, 2001.

36. Germán Puebla and Manuel Hermenegildo. Optimized algorithms for incremental
analysis of logic programs. In Radhia Cousot and David A. Schmidt, editors, Static
Analysis, pages 270–284, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

37. Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant. Preprocessing of
propagation redundant clauses. In Jasmin Blanchette, Laura Kovács, and Dirk
Pattinson, editors, Automated Reasoning - 11th International Joint Conference,
IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of Lec-
ture Notes in Computer Science, pages 106–124. Springer, 2022.

38. Karem A. Sakallah. Symmetry and satisfiability. In Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages
509–570. IOS Press, 2021.

39. Sabrine Saouli, Souheib Baarir, Claude Dutheillet, and Jo Devriendt. Cosysel:
Improving SAT solving using local symmetries. In Cezara Dragoi, Michael Emmi,
and Jingbo Wang, editors, Verification, Model Checking, and Abstract Interpreta-
tion - 24th International Conference, VMCAI 2023, Boston, MA, USA, January
16-17, 2023, Proceedings, volume 13881 of Lecture Notes in Computer Science,
pages 252–266. Springer, 2023.

40. Martin W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. INFORMS J. Comput., 6(4):445–454, 1994.

41. Uwe Schöning. Logik für Informatiker, volume 56 of Reihe Informatik. Bibli-
ographisches Institut, 1987.

42. Viorica Sofronie-Stokkermans. Hierarchical and modular reasoning in complex
theories: The case of local theory extensions. In Boris Konev and Frank Wolter,
editors, Frontiers of Combining Systems, 6th International Symposium, FroCoS
2007, Liverpool, UK, September 10-12, 2007, Proceedings, volume 4720 of Lecture
Notes in Computer Science, pages 47–71. Springer, 2007.

43. Petar Vukmirović, Jasmin Blanchette, and Marijn J. H. Heule. Sat-inspired elimi-
nations for superposition. ACM Trans. Comput. Log., 24(1):7:1–7:25, 2023.

44. Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça de Moura.
Efficiently solving quantified bit-vector formulas. Formal Methods Syst. Des.,
42(1):3–23, 2013.

45. Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. Fast algebraic rewriting based
on and-inverter graphs. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 37(9):1907–1911, 2018.

