
IPASIR-UP: User Propagators for CDCL

SAT Conference, July 7, 2023
Alghero, Italy

Katalin Fazekas1, Aina Niemetz2, Mathias Preiner2,
Markus Kirchweger1, Stefan Szeider1, Armin Biere3

1TU Wien, Vienna, Austria
2Stanford University, Stanford, USA

3University of Freiburg, Freiburg, Germany



Usual Use of SAT Solvers

Problem

Propositional
Formula

SAT
Solver

Solution /
Refutation

Answer

Encode Decode

1/12



Usual Use of SAT Solvers

M |= φ?

Propositional
Formula

SAT
Solver

Solution

A bug in
the system

Encode Decode

1/12



Usual Use of SAT Solvers

Propositional
Formula

SAT
Solver

Refutation

R(4, 4) = 18

Encode Decode

1/12



Usual Use of Incremental SAT Solvers

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Partially
Encode

Answer

DecodeRefine
Add /

Assume

■ Model enumeration, model checking, CEGAR, symbolic execution, . . .

2/12



Usual Use of Incremental SAT Solvers

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Partially
Encode

Answer

Decode

Refine

Add /
Assume

■ Model enumeration, model checking, CEGAR, symbolic execution, . . .

2/12



Usual Use of Incremental SAT Solvers

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Partially
Encode

Answer

Decode

Refine
Add /

Assume

■ Model enumeration, model checking, CEGAR, symbolic execution, . . .

2/12



Usual Use of Incremental SAT Solvers

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Partially
Encode

Answer

Decode

Refine

Add /
Assume

■ Model enumeration, model checking, CEGAR, symbolic execution, . . .

2/12



Usual Use of Incremental SAT Solvers

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Partially
Encode

Answer

Decode

Refine

Add /
Assume

■ Model enumeration, model checking, CEGAR, symbolic execution, . . .

2/12



Use of Incremental SAT Solvers via User Propagators

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Answer

Partially
Encode

Decode

Inspect &
Influence

■ Combinatorial problems, SMT, symmetry breaking, model enumeration,
MaxSAT, . . .

3/12



Use of Incremental SAT Solvers via User Propagators

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Answer

Partially
Encode

Decode

Inspect &
Influence

■ Combinatorial problems, SMT, symmetry breaking, model enumeration,
MaxSAT, . . .

3/12



IPASIR-UP: A New Interface for Interactive CDCL

■ Interface to support standardized interactions with the solver during solving
− Needs to be implemented in SAT solvers (only once)
+ Easy to implement and use
+ Solver independent application development
+ No more black-box SAT solving → new potentials
+ Standardized and clean interactions

4/12



IPASIR Model of Incremental SAT Solvers [BalyoBiereIserSinz’16]

■ IPASIR: “Re-entrant Incremental Satisfiability Application Program Interface”
■ Supports interactions between solve calls

5/12



IPASIR Model of Incremental SAT Solvers [BalyoBiereIserSinz’16]

■ IPASIR: “Re-entrant Incremental Satisfiability Application Program Interface”
■ Supports interactions between solve calls

5/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search

1. Add propagations (without
adding reason clauses)

2. Dictate decisions & phases
3. Add new clauses (anytime!)
4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

6/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search

1. Add propagations (without
adding reason clauses)

2. Dictate decisions & phases
3. Add new clauses (anytime!)
4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

6/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search
1. Add propagations (without

adding reason clauses)

2. Dictate decisions & phases
3. Add new clauses (anytime!)
4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

cb_propagate

6/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search
1. Add propagations (without

adding reason clauses)
2. Dictate decisions & phases

3. Add new clauses (anytime!)
4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

cb_propagate

cb_decide

6/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search
1. Add propagations (without

adding reason clauses)
2. Dictate decisions & phases
3. Add new clauses (anytime!)

4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

cb_propagate

cb_decide

cb_add_external

6/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search
1. Add propagations (without

adding reason clauses)
2. Dictate decisions & phases
3. Add new clauses (anytime!)
4. Overrule found solutions

5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

cb_propagate

cb_decide

cb_add_external

cb_check_found_model

6/12



IPASIR-UP: IPASIR with User Propagators

■ Supports interactions during
the solve () calls

■ Inspect search
□ Notify all changes to the trail

■ Influence search
1. Add propagations (without

adding reason clauses)
2. Dictate decisions & phases
3. Add new clauses (anytime!)
4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

cb_propagate

cb_decide

cb_add_external

cb_check_found_model

cb_add_reason

6/12



Related Work

■ clingo [GebserKaminskiKaufmannOstrowskiSchaubWanko’16]

□ A state-of-the-art ASP solver
□ Supports theory propagators

■ IntelSAT [Nadel’22]

□ Add clauses during search while maintaining propagation levels

■ CP solvers [GentMiguelMoore’10]

□ Lazy explanation, lazy clause generation

■ SAT solvers of SMT solvers [NieuwenhuisOliverasTinelli’06]

□ SAT worker interface [CimattiGriggioSchaafsmaSebastiani’13]

□ User propagators of z3 [BjørnerEisenhoferKovács’22]

Propagators are widely used, but there is no standard about how to do it.

7/12



IPASIR-UP Experiments

■ Extended CaDiCaL with IPASIR-UP
□ A state-of-the-art incremental, inprocessing, proof producing SAT solver
□ ∼800 lines of additional code (plus another ∼700 for testing)

■ Evaluated on two representative use cases
□ Combinatorial problem solving: SAT modulo Symmetries (SMS)
□ Satisfiability modulo Theories: cvc5

8/12



IPASIR-UP for SAT modulo Symmetries – Example

■ Goal: Find complete set of non-isomorphic graphs over n vertices
□ Enumerate graphs with lexicographically minimal adjacency matrix
□ Would require exponential number of additional clauses

■ cb_add_clause:
□ Enforce minimality
□ Block models without restarting the search

■ cb_propagate:
□ Reduce number of added clauses

9/12



IPASIR-UP for SAT modulo Symmetries – Example

■ Goal: Find complete set of non-isomorphic graphs over n vertices
□ Enumerate graphs with lexicographically minimal adjacency matrix
□ Would require exponential number of additional clauses

■ cb_add_clause:
□ Enforce minimality
□ Block models without restarting the search

■ cb_propagate:
□ Reduce number of added clauses

9/12



IPASIR-UP for Satisfiability Modulo Theories – cvc5

Satisfiability Modulo Theories (SMT):

■ Satisfiability of a first-order formula w.r.t. some background theories
■ Example theories: Arrays, bit-vectors, Arithmetic, . . .
■ Back-end solvers in verification, synthesis, planning, optimization, etc.
■ Lazy CDCL(T ) approach:

SAT
Solver

Theory
Solvers

10/12



IPASIR-UP for Satisfiability Modulo Theories – cvc5

Satisfiability Modulo Theories (SMT):

■ Satisfiability of a first-order formula w.r.t. some background theories
■ Example theories: Arrays, bit-vectors, Arithmetic, . . .
■ Back-end solvers in verification, synthesis, planning, optimization, etc.
■ Lazy CDCL(T ) approach:

SAT
Solver

Theory
Solvers

notify_*

cb_decide, cb_propagate,
cb_add_clause, cb_check_model

10/12



IPASIR-UP in cvc5
■ cvc5: State-of-the-art SMT solver

□ Best ranking in several tracks of SMT’22 competition

■ Supports all standard background theories
■ Functions beyond SMT: abduction, interpolation, syntax-guided synthesis

■ Highly tuned for a customized version of MiniSat

cvc5 with CaDiCaL through IPASIR-UP:

■ Additional ∼700 LOC to work with IPASIR-UP
■ Encouraging performance without much tuning or optimizations

□ +1080 solved instances
□ ∼ 2× faster in several logics
□ 13 out of 19 divisions are improved

■ Any IPASIR-UP supporting SAT solver can be plugged in
→ solid baseline to tune and improve cvc5’s internals for the IPASIR-UP interface

11/12



IPASIR-UP in cvc5
■ cvc5: State-of-the-art SMT solver

□ Best ranking in several tracks of SMT’22 competition

■ Supports all standard background theories
■ Functions beyond SMT: abduction, interpolation, syntax-guided synthesis
■ Highly tuned for a customized version of MiniSat

cvc5 with CaDiCaL through IPASIR-UP:

■ Additional ∼700 LOC to work with IPASIR-UP
■ Encouraging performance without much tuning or optimizations

□ +1080 solved instances
□ ∼ 2× faster in several logics
□ 13 out of 19 divisions are improved

■ Any IPASIR-UP supporting SAT solver can be plugged in
→ solid baseline to tune and improve cvc5’s internals for the IPASIR-UP interface

11/12



IPASIR-UP in cvc5
■ cvc5: State-of-the-art SMT solver

□ Best ranking in several tracks of SMT’22 competition

■ Supports all standard background theories
■ Functions beyond SMT: abduction, interpolation, syntax-guided synthesis
■ Highly tuned for a customized version of MiniSat

cvc5 with CaDiCaL through IPASIR-UP:

■ Additional ∼700 LOC to work with IPASIR-UP
■ Encouraging performance without much tuning or optimizations

□ +1080 solved instances
□ ∼ 2× faster in several logics
□ 13 out of 19 divisions are improved

■ Any IPASIR-UP supporting SAT solver can be plugged in
→ solid baseline to tune and improve cvc5’s internals for the IPASIR-UP interface

11/12



Summary

■ Generic interface to inspect and influence CDCL search
□ Simple & Flexible → relatively easy to implement
□ Sufficient to simplify several use cases

■ Implemented in a complex, modern SAT solver
□ Allows inprocessing of non-changing parts

■ Evaluated in representative use cases (SMS, SMT)
→ Captures the necessary interactions of a very wide range of use cases

Future Work

■ Consider further extensions
□ Propagate assumptions, guide backtrack, query/change variable scores, . . .

■ Proofs
□ Incremental (inprocessing) proofs
□ External proofs of external clauses

■ More inprocessing

12/12



Summary

■ Generic interface to inspect and influence CDCL search
□ Simple & Flexible → relatively easy to implement
□ Sufficient to simplify several use cases

■ Implemented in a complex, modern SAT solver
□ Allows inprocessing of non-changing parts

■ Evaluated in representative use cases (SMS, SMT)
→ Captures the necessary interactions of a very wide range of use cases

Future Work

■ Consider further extensions
□ Propagate assumptions, guide backtrack, query/change variable scores, . . .

■ Proofs
□ Incremental (inprocessing) proofs
□ External proofs of external clauses

■ More inprocessing 12/12



Thank you for your attention!



IPASIR Interface



Functions to Manage and Configure



Example C++ implementation



Complete SMS Results

■ Task 2: Generate up to isomorphism all non-010-colorable graphs with a
minimum degree of at least three not containing a cycle of length 4 (used for
Kochen-Specker Theorem)



cvc5 Results (Divisions)



cvc5 Results (Logics)

■ Considered only the commonly solved instances


