IPASIR-UP: User Propagators for CDCL

SAT Conference, July 7, 2023
Alghero, ltaly

Katalin Fazekas', Aina Niemetz?, Mathias Preiner?,
Markus Kirchweger!, Stefan Szeider', Armin Biere®

'TU Wien, Vienna, Austria
2Stanford University, Stanford, USA
SUniversity of Freiburg, Freiburg, Germany

M @ CN |V/U2 RE

nc
-mZs

BURG

Usual Use of SAT Solvers

Problem Answer
Encodel T Decode
Propositional SAT Solution /

Formula Solver Refutation

112

Usual Use of SAT Solvers

A bug in
M ?
= the system
Encodel TDecode
Propositional SAT
P na Solution

Formula Solver

112

Usual Use of SAT Solvers

N

T~
\/\/ R(4,4) = 18
-
Encodel T Decode
Propositional SAT

Refutation
Formula Solver

112

Usual Use of Incremental SAT Solvers

Problem

Partiallyl
Encode

Propositional Incremental Solution /
Formula SAT Solver Refutation

2/12

Usual Use of Incremental SAT Solvers

 Refine

Propositional Incremental Solution /
Formula SAT Solver Refutation

2/12

Usual Use of Incremental SAT Solvers

Add/ i
Assumey

Propositional Incremental Solution /
Formula SAT Solver Refutation

 Refine

2/12

Usual Use of Incremental SAT Solvers

Problem Answer
Add/ TDecode
Assumey

Propositional Incremental Solution /
Formula SAT Solver Refutation

2/12

Usual Use of Incremental SAT Solvers

Problem Answer
Add/ TDecode
Assumey

Propositional Incremental Solution /
Formula SAT Solver Refutation

B Model enumeration, model checking, CEGAR, symbolic execution, ...

2/12

Use of Incremental SAT Solvers via User Propagators

Problem Answer
Partially
Decode
Encode l T

Propositional Incremental Solution /
Formula SAT Solver Refutation

B Combinatorial problems, SMT, symmetry breaking, model enumeration,
MaxSAT, ...

3/12

Use of Incremental SAT Solvers via User Propagators

Inspect &
Problem B i Answer
Influgnce

Partially :
: Decode
Encode l ; T
Propositional Incremental Solution /
Formula SAT Solver Refutation

B Combinatorial problems, SMT, symmetry breaking, model enumeration,
MaxSAT, ...

3/12

IPASIR-UP: A New Interface for Interactive CDCL

B Interface to support standardized interactions with the solver during solving
— Needs to be implemented in SAT solvers (only once)
+ Easy to implement and use
+ Solver independent application development
+ No more black-box SAT solving — new potentials
+ Standardized and clean interactions

4/12

IPASIR Model of Incremental SAT Solvers [sayosiereisersinz’16]

add
assume

init

B |IPASIR: “Re-entrant Incremental Satisfiability Application Program Interface”

B Supports interactions between solve calls
5/12

IPASIR Model of Incremental SAT Solvers [sayosiereisersinz’16]

add
assume

init

B IPASIR: “Re-entrant Incremental Satisfiability Application Program Interface”

B Supports interactions between solve calls
5/12

IPASIR-UP: IPASIR with User Propagators

B Supports interactions during

the solve () calls
SAT

backtracking

Learning]——|>[UNSAT

—

Conflict
Analysis

5

Solving

6/12

IPASIR-UP: IPASIR with User Propagators

B Supports interactions during
the solve () calls
B Inspect search
[J Notify all changes to the trail

Solving

backtracking

SAT

Learning]—

—l>[UNSAT

—

Conflict
Analysis

6/12

IPASIR-UP: IPASIR with User Propagators

B Supports interactions during
the solve () calls
B Inspect search
[J Notify all changes to the trail

SAT

backtracking

B Influence search

[Learning]——D‘ UNSAT

—

1. Add propagations (without :
adding reason clauses) Cb_pr;'éagate

Conflict
Analysis

5

Solving

6/12

IPASIR-UP: IPASIR with User Propagators

B Supports interactions during cb_decide

the solve () calls)

B Inspect search
[J Notify all changes to the trail

SAT

backtracking

B Influence search

[Learning]——D‘ UNSAT

—

1. Add propagations (without :
adding reason clauses) Cb_pr;};agate
2. Dictate decisions & phases

Conflict
Analysis

5

Solving

6/12

IPASIR-UP: IPASIR with User Propagators

B Supports interactions during
the solve () calls
B Inspect search
[J Notify all changes to the trail
B Influence search

1. Add propagations (without
adding reason clauses)

2. Dictate decisions & phases

3. Add new clauses (anytime!)

cb_decide

cb_pro'pagate

Solving

backtracking
Pttt e

<1—lq Learning]—

SAT

—l>[UNSAT

—

cbﬁaddfé;ternal

Conflict
Al Analysis

6/12

IPASIR-UP: IPASIR with User Propagators

cb_check_found_model

B Supports interactions during
the solve () calls

B Inspect search

[J Notify all changes to the trail
B Influence search

1. Add propagations (without

adding reason clauses)
2. Dictate decisions & phases

Add new clauses (anytime!)
4. Overrule found solutions

w

.-

Y
'
1

SAT

A4

.':[UNSAT]

cb_(li_e\cide v

; Solution
backtracking v
Wit
<1—lq Learning
':: ”7& J
- cb_add external l
cb_propagate

Conflict
Analysis

Solving

—

6/12

IPASIR-UP: IPASIR with User Propagators

B Supports interactions during
the solve () calls
B Inspect search
[J Notify all changes to the trail
B Influence search

1. Add propagations (without
adding reason clauses)
Dictate decisions & phases
Add new clauses (anytime!)
Overrule found solutions
Explain relevant propagations

o0

cb_decide

v

Solving

cb_check_found_model

— v

Solution

Analysis

backtracking v

A4

SAT

Learning

.':[UNSAT]

Conflict
Analysis

’

cb_add reason

6/12

Related Work

[| cIingo [GebserKaminskiKaufmannOstrowskiSchaubWanko’16]

(] A state-of-the-art ASP solver
[J Supports theory propagators

B IntelSAT [Nadel22]

[J Add clauses during search while maintaining propagation levels
B CP solvers [GeniMiguelMoore'10]

[J Lazy explanation, lazy clause generation
B SAT solvers of SMT solvers [NieuwenhuisOliverasTinelli'06]

[0 SAT worker interface [CimattiGriggioSchaafsmaSebastiani’13]
[User propagators of z3 [BjernerEisenhoferkovacs'22]

Propagators are widely used, but there is no standard about how to do it.

712

IPASIR-UP Experiments

B Extended CaDiCalL with IPASIR-UP

O A state-of-the-art incremental, inprocessing, proof producing SAT solver
0 ~800 lines of additional code (plus another ~700 for testing)

B Evaluated on two representative use cases

[0 Combinatorial problem solving: SAT modulo Symmetries (SMS)
[0 Satisfiability modulo Theories: cvc5

8/12

IPASIR-UP for SAT modulo Symmetries — Example

B Goal: Find complete set of non-isomorphic graphs over n vertices
O Enumerate graphs with lexicographically minimal adjacency matrix
[J Would require exponential number of additional clauses

M cb_add_clause:
[0 Enforce minimality
[0 Block models without restarting the search

B cb_propagate:
[J Reduce number of added clauses

9/12

IPASIR-UP for SAT modulo Symmetries — Example

B Goal: Find complete set of non-isomorphic graphs over n vertices
O Enumerate graphs with lexicographically minimal adjacency matrix
[J Would require exponential number of additional clauses

M cb_add_clause:
O Enforce minimality
[0 Block models without restarting the search

B cb_propagate:
[J Reduce number of added clauses

CaDiCaL+IPASIR-UP [s] Clingo [s]
#tvertices #graphs default enum-IPASIR no-prop red irred
6 156 0.01 0.02 0.01 0.02 0.01
T 1044 0.09 0.13 0.09 0.10 0.09
All graphs 8 12346 0.95 1.59 Lo 115 Lo7
9 2T4668 34.24 64.27 34.31 BLGT 94.65
10 12005168 50815.60 109443.72 5T616.47 213959.23 196576.58

9/12

IPASIR-UP for Satisfiability Modulo Theories — cvch

Satisfiability Modulo Theories (SMT):

B Satisfiability of a first-order formula w.r.t. some background theories
B Example theories: Arrays, bit-vectors, Arithmetic, . ..

B Back-end solvers in verification, synthesis, planning, optimization, etc.
B Lazy CDCL(T) approach:

7
SAT Theory

Solver Solvers
\/

10/12

IPASIR-UP for Satisfiability Modulo Theories — cvch

Satisfiability Modulo Theories (SMT):

B Satisfiability of a first-order formula w.r.t. some background theories
B Example theories: Arrays, bit-vectors, Arithmetic, . ..

B Back-end solvers in verification, synthesis, planning, optimization, etc.
B Lazy CDCL(T) approach:

notify_x*
~
SAT Theory
Solver Solvers
N~

cb_decide, cb_propagate

cb_add_clause, cb_check_model

10/12

IPASIR-UP in cvc5

B cvc5: State-of-the-art SMT solver
[J Best ranking in several tracks of SMT’22 competition
B Supports all standard background theories
B Functions beyond SMT: abduction, interpolation, syntax-guided synthesis

1112

IPASIR-UP in cveb
B cvc5: State-of-the-art SMT solver
[J Best ranking in several tracks of SMT’22 competition
B Supports all standard background theories
B Functions beyond SMT: abduction, interpolation, syntax-guided synthesis
B Highly tuned for a customized version of MiniSat

1112

IPASIR-UP in cvc5

B cvch: State-of-the-art SMT solver
[J Best ranking in several tracks of SMT’22 competition

B Supports all standard background theories
B Functions beyond SMT: abduction, interpolation, syntax-guided synthesis
B Highly tuned for a customized version of MiniSat

cvc5 with CaDiCal through IPASIR-UP:

B Additional ~700 LOC to work with IPASIR-UP
B Encouraging performance without much tuning or optimizations
J +1080 solved instances
[0 ~ 2x faster in several logics
J 13 out of 19 divisions are improved
B Any IPASIR-UP supporting SAT solver can be plugged in
— solid baseline to tune and improve cvc5’s internals for the IPASIR-UP interface

1112

Summary

B Generic interface to inspect and influence CDCL search
[J Simple & Flexible — relatively easy to implement
[Sufficient to simplify several use cases
B Implemented in a complex, modern SAT solver
[J Allows inprocessing of non-changing parts
B Evaluated in representative use cases (SMS, SMT)
— Captures the necessary interactions of a very wide range of use cases

12/12

Summary

B Generic interface to inspect and influence CDCL search
[J Simple & Flexible — relatively easy to implement
[Sufficient to simplify several use cases
B Implemented in a complex, modern SAT solver
[J Allows inprocessing of non-changing parts
B Evaluated in representative use cases (SMS, SMT)
— Captures the necessary interactions of a very wide range of use cases

Future Work

B Consider further extensions

[J Propagate assumptions, guide backtrack, query/change variable scores, ...
B Proofs

[J Incremental (inprocessing) proofs

O External proofs of external clauses

B More inprocessing 12/12

Thank you for your attention!

IPASIR Interface

// Get solver name and version
const charx ipasir_signature ():
// Initialize a solver instance and return a pointer to it
void* ipasir_init ():
// Destroy the solver instance
void ipasir.release (void* solver):
// Set a callback function for aborting solving
void ipasir_set_terminate(void= solver, voidx state
int (=terminate)(void* state)):
// Add a literal or finalize clause
void ipasir_add (void* solver, int lit_or_zero);:
// Assume a literal for the next solve call
void ipasir_assume (void* solver , int lit);
// Solve the formula
int ipasir_solve(void* solver):
// Retrieve a wvariables truth value (SAT case)
int ipasir_val(void* solver ., int lit);:
// Check for a failed assumption (UNSAT case)
int ipasir_failed (void* solver, int lit);

Functions to Manage and Configure

10

// VALID = UNKNOWN | SATISFIED | UNSATISFIED
//

// require (VALID) -> ensure (VALID)

//

void connect_external_propagator (ExternalPropagator * propagator);

// require (VALID) -> ensure (VALID)
//

void disconnect_external_propagator ();

// require (VALID_OR_SOLVING) /\ CLEAN(var) -> ensure (VALID_OR_SOLVING)
//

void add_observed_var (int var);

5 // require (VALID) -> ensure (VALID)

//

void remove_observed_var (int var);

// require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)
//

bool is_decision (int observed_var);

// require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)

//
void phase (int 1lit);

// require (VALID_OR_SOLVING) -> ensure (VALID_OR_SOLVING)
//

void unphase (int 1it);

Example C++ implementation

1 class ExternalPropagator {

2 public:

3 virtual ~ExternalPropagator () { }
4

5 virtual void notify_assignment (int 1lit, bool is_fixed) {}
6 virtual void notify_new_decision_level () {}
7 virtual void notify_backtrack (size_t new_level) {}

9 virtual int cb_decide () { return 0; }

10 virtual int cb_propagate () { return 0; }

11 virtual int cb_add_reason_clause_lit (int propagated_lit) {
12 return O0;

13 }

14 virtual bool cb_check_found_model (const std::vector<int> & model) {
15 return true;

16 }

17

18 virtual bool cb_has_external_clause () { return false; }

19 virtual int cb_add_extermnal_clause_1lit () { return 0; }

20 };

Complete SMS Results

CaDiCaL+IPASIR-UP [s] Clingo [s]
Fvertices Ffgraphs default enum-IPASIR no-prop red irred
6 156 o1 0.0z 0.01 0.02 0.01
T 1044 0.09 0.13 0.09 0.10 0.0
All graphs & 12346 0.95 Lo 115 Lo7
9 2TA66R 34.24 3431 2167 04.65
10 12005168 S0815.60 109443.72 5T6HL6.47 213959.23 196576.58
#tvertices #graphs default no-inpro no-prop red irred
16 0 10.58 9.14 : 25.07 18.56
17 1 39.82 3148 44.58 122.28 R7.92
KS candidates 18 0 190.16 50.37 187.29 872.08 493.17
19 8 1341.80 10542.41 334814
20 147 13493.86 67728.42 #2871.65

B Task 2: Generate up to isomorphism all non-010-colorable graphs with a
minimum degree of at least three not containing a cycle of length 4 (used for
Kochen-Specker Theorem)

cvch Results (Divisions)

oved CVCH-IPASIRUP
Division solved time [s] solved time [5]
Arith (6.865) 6,303 173,628 6,200 176,278
BitVec (6.045) 5,562 153,899 5,529 161,452
Equality (12.159) 5,320 2,062 804 5,322 2,061,758
Equality+LinearArith (53.453) 45002 2288230 45,906 2288352
Equality+MachineArith (6,071) 983 1.533.646 98T 1.532.782
Equality+NonLinearArith (21,104) 13,314 2,419,535 13,053 2,486,588
FPArith (3.,965) 3,145 268,628 3,155 266,245
QF_Bitvec (42.472) 40,321 984,850 40.320 85,546
QF _Datatypes (8,403) 8,077 110,704 8,168 #2878
QF Equality (8,054) 8,044 9,394 8,047 T.169
QF _Equality+Bitvec (16,585) 15,817 307,558 16,015 234,369
QF _Equality+Linear Arith (3,442) 3,388 23,041 3.381 23,465
QF_Equality+NonLinear Arith (709) 627 27428 629 27.598
QF _FPArith (76,238) 6,054 94487 76,081 76.700
QF LinearIntArith (16,387) 1L6T0 LAT5.635 12,004 1.512.696
QF_LinearReal Arith (2.008) 1,721 130,408 1,766 113,919
QF_NonLinearIntArith (25.361) 13,037 4094712 13,682 3.540.933
Q)F_NonLinearRealArith (12,134) 11,166 333,933 11,238 316,728
QF _Strings (69,908) 69,357 208,677 (9,206 230,918
Total (391.363) 339,798 16.796.234 340,878 16,426,813

cvch Results (Logics)

108
o
°
°
10¢ °
°
o ®
ERU . ®
& °
g o
g °
5 ®
o
107 ° ot
®
°
101
o
o
100
100 10! 102 109 10 108

B Considered only the commonly solved instances

cves-Minisat (s)

