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Boolean Satisfiability Problem (SAT)

■ Propositional logic

■ NP-complete problem: Is this set of clauses satisfiable?

{a = ⊤, b = ⊥}

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)
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SAT-based Bounded Model Checking

■ Encode HW/SW system and its properties into propositional logic

■ Goal: Given safety property, uncover if there is a possible way to violate it
■ Bound: limit the depth of the search in the state space

□ Incrementally increase the bound on the number of steps explored

Fi satisfiable ↔ there is a property violation up to i steps
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Incremental SAT Problems

■ In practice problems often formulated step-by-step:

Is formula F0

under x1

satisfiable?

Is formula F0 ∧ F1

under x1 and x2

satisfiable?

Is formula F0 ∧ F1 ∧ F2

under no assumption

satisfiable?

■ Sequence of decision problems where each problem is an extension or slight
modification of the previous one.

■ Assumptions: Temporary constraints that are considered in the next query and
after that immediately deleted.

■ Incremental Solvers: Can solve each formula with the exact same solver.
+ Reuse reasoning steps instead of repeating them.
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SAT-based Bounded Model Checking & Incremental SAT

+ Incremental reasoning can lead to significant speed up in BMC

+ Verifiable results of (non-incremental) SAT solvers
− Not all results are certified in incremental SAT solvers.
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Verifiable Results – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution of SAT: Satisfying truth assignment that agrees with assumptions.
■ Proof of UNSAT:

□ wo. assumptions: Derivation of the empty clause.
□ with assumptions: Not defined, no guaranties what will be derived.
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Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF IDRUP

■ New ICNF input format:
□ encodes complete incremental queries

■ New IDRUP proof format:
□ explicitly reasons about failed assumptions
□ supports incremental inprocessing operations
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Syntax & Semantics of the New Formats

■ FA, FP : active and passive clauses
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ICNF & IDRUP Example

Incremental
SAT Solver
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IDRUP-CHECK – Checking Incremental Proofs

INTERACTION_HEADER

PROOF_HEADER

 p icnf

INTERACTION_INPUT

 p idrup

reading from ICNF interaction file reading from IDRUP proof file

end-of-checking

  $    

PROOF_INPUT

 i 

PROOF_QUERY

 q  i 

 l | d | r | w  l | d | r | w

PROOF_CHECK

 q 

 l | d | r | w 

INTERACTION_SATISFIABLE?

 s SATISFIABLE 

INTERACTION_UNSATISFIABLE?

 s UNSATISFIABLE 

INTERACTION_UNKNOWN

 s UNKNOWN 

INTERACTION_SATISFIED!

 s SATISFIABLE 

INTERACTION_UNSATISFIED!

 s UNSATISFIABLE 

s UNKNOWN

PROOF_CORE

 u 

PROOF_MODEL

 m 

 m  u 
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Experiments

■ Hardware Model Checking Competition Benchmark set (2017), 300 instances
■ Limits: 16 GB memory, 1000 second, maximum bound: k = 100

→ at most 101 incremental SAT query for each instance
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Results

■ Very small overhead of proof writing
■ Reasonable proof checking time (∼ 2x)
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Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of SAT-based Model Checkers

■ IDRUP-CHECK: First prototype to check IDRUP proofs
□ First incremental proof checker

■ Promising preliminary results in HW model checker CaMiCaL

■ Future Work:

□ more evaluation (e.g. in IC3)

□ backward proof checking, trimming

□ verify proof checker

□ incremental LRAT

Thank you!
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