
Incremental Proofs for Bounded Model Checking

Methoden und Beschreibungssprachen zur Modellierung
und Verifikaton von Schaltungen und Systemen

February 15, 2024

Katalin Fazekas1, Florian Pollitt2, Mathias Fleury2, and Armin Biere2

1TU Wien, Vienna, Austria
2Albert–Ludwigs–University, Freiburg, Germany

Outline

Preliminaries & Motivation

Our Contributions

Conclusion

Boolean Satisfiability Problem (SAT)

■ Propositional logic

■ NP-complete problem: Is this set of clauses satisfiable?

{a = ⊤, b = ⊥}

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

1/12

Boolean Satisfiability Problem (SAT)

■ Propositional logic

■ NP-complete problem: Is this set of clauses satisfiable?

{a = ⊤, b = ⊥}

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

1/12

Boolean Satisfiability Problem (SAT)

■ Propositional logic

■ NP-complete problem: Is this set of clauses satisfiable?

{a = ⊤, b = ⊥}

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

1/12

SAT-based Bounded Model Checking

■ Encode HW/SW system and its properties into propositional logic

■ Goal: Given safety property, uncover if there is a possible way to violate it
■ Bound: limit the depth of the search in the state space

□ Incrementally increase the bound on the number of steps explored

Fi satisfiable ↔ there is a property violation up to i steps

2/12

SAT-based Bounded Model Checking

■ Encode HW/SW system and its properties into propositional logic

■ Goal: Given safety property, uncover if there is a possible way to violate it

■ Bound: limit the depth of the search in the state space
□ Incrementally increase the bound on the number of steps explored

Fi satisfiable ↔ there is a property violation up to i steps

2/12

SAT-based Bounded Model Checking

■ Encode HW/SW system and its properties into propositional logic

■ Goal: Given safety property, uncover if there is a possible way to violate it
■ Bound: limit the depth of the search in the state space

□ Incrementally increase the bound on the number of steps explored

Fi satisfiable ↔ there is a property violation up to i steps

2/12

SAT-based Bounded Model Checking

■ Encode HW/SW system and its properties into propositional logic

■ Goal: Given safety property, uncover if there is a possible way to violate it
■ Bound: limit the depth of the search in the state space

□ Incrementally increase the bound on the number of steps explored

Fi satisfiable ↔ there is a property violation up to i steps

2/12

Incremental SAT Problems

■ In practice problems often formulated step-by-step:

Is formula F0

under x1

satisfiable?

Is formula F0 ∧ F1

under x1 and x2

satisfiable?

Is formula F0 ∧ F1 ∧ F2

under no assumption

satisfiable?

■ Sequence of decision problems where each problem is an extension or slight
modification of the previous one.

■ Assumptions: Temporary constraints that are considered in the next query and
after that immediately deleted.

■ Incremental Solvers: Can solve each formula with the exact same solver.
+ Reuse reasoning steps instead of repeating them.

3/12

Incremental SAT Problems

■ In practice problems often formulated step-by-step:

Is formula F0

under x1

satisfiable?

Is formula F0 ∧ F1

under x1 and x2

satisfiable?

Is formula F0 ∧ F1 ∧ F2

under no assumption

satisfiable?

■ Sequence of decision problems where each problem is an extension or slight
modification of the previous one.

■ Assumptions: Temporary constraints that are considered in the next query and
after that immediately deleted.

■ Incremental Solvers: Can solve each formula with the exact same solver.
+ Reuse reasoning steps instead of repeating them.

3/12

Incremental SAT Problems

■ In practice problems often formulated step-by-step:

Is formula F0 under x1 satisfiable?

Is formula F0 ∧ F1 under x1 and x2 satisfiable?

Is formula F0 ∧ F1 ∧ F2 under no assumption satisfiable?

■ Sequence of decision problems where each problem is an extension or slight
modification of the previous one.

■ Assumptions: Temporary constraints that are considered in the next query and
after that immediately deleted.

■ Incremental Solvers: Can solve each formula with the exact same solver.
+ Reuse reasoning steps instead of repeating them.

3/12

Incremental SAT Problems

■ In practice problems often formulated step-by-step:

Is formula F0 under x1 satisfiable?

Is formula F0 ∧ F1 under x1 and x2 satisfiable?

Is formula F0 ∧ F1 ∧ F2 under no assumption satisfiable?

■ Sequence of decision problems where each problem is an extension or slight
modification of the previous one.

■ Assumptions: Temporary constraints that are considered in the next query and
after that immediately deleted.

■ Incremental Solvers: Can solve each formula with the exact same solver.
+ Reuse reasoning steps instead of repeating them.

3/12

SAT-based Bounded Model Checking & Incremental SAT

+ Incremental reasoning can lead to significant speed up in BMC

+ Verifiable results of (non-incremental) SAT solvers
− Not all results are certified in incremental SAT solvers.

4/12

SAT-based Bounded Model Checking & Incremental SAT

+ Incremental reasoning can lead to significant speed up in BMC

+ Verifiable results of (non-incremental) SAT solvers

− Not all results are certified in incremental SAT solvers.

4/12

SAT-based Bounded Model Checking & Incremental SAT

+ Incremental reasoning can lead to significant speed up in BMC

+ Verifiable results of (non-incremental) SAT solvers
− Not all results are certified in incremental SAT solvers.

4/12

Verifiable Results – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution of SAT: Satisfying truth assignment that agrees with assumptions.
■ Proof of UNSAT:

□ wo. assumptions: Derivation of the empty clause.
□ with assumptions: Not defined, no guaranties what will be derived.

5/12

Verifiable Results – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution of SAT: Satisfying truth assignment that agrees with assumptions.

■ Proof of UNSAT:

□ wo. assumptions: Derivation of the empty clause.
□ with assumptions: Not defined, no guaranties what will be derived.

5/12

Verifiable Results – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution of SAT: Satisfying truth assignment that agrees with assumptions.
■ Proof of UNSAT:

□ wo. assumptions: Derivation of the empty clause.

□ with assumptions: Not defined, no guaranties what will be derived.

5/12

Verifiable Results – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT
SAT
Solver

UNSAT

■ Standardized input and output formats, guaranteed verifiable certificates.

■ Solution of SAT: Satisfying truth assignment that agrees with assumptions.
■ Proof of UNSAT:

□ wo. assumptions: Derivation of the empty clause.
□ with assumptions: Not defined, no guaranties what will be derived.

5/12

Outline

Preliminaries & Motivation

Our Contributions

Conclusion

Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF IDRUP

■ New ICNF input format:
□ encodes complete incremental queries

■ New IDRUP proof format:
□ explicitly reasons about failed assumptions
□ supports incremental inprocessing operations

6/12

Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF IDRUP

■ New ICNF input format:
□ encodes complete incremental queries

■ New IDRUP proof format:
□ explicitly reasons about failed assumptions
□ supports incremental inprocessing operations

6/12

Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF IDRUP

■ New ICNF input format:
□ encodes complete incremental queries

■ New IDRUP proof format:
□ explicitly reasons about failed assumptions
□ supports incremental inprocessing operations

6/12

Incremental Input and Proof Formats

SAT
Solver

DIMACS DRUP

Incremental
SAT Solver

ICNF IDRUP

■ New ICNF input format:
□ encodes complete incremental queries

■ New IDRUP proof format:
□ explicitly reasons about failed assumptions
□ supports incremental inprocessing operations

6/12

Syntax & Semantics of the New Formats

■ FA, FP : active and passive clauses

7/12

Syntax & Semantics of the New Formats

■ FA, FP : active and passive clauses

7/12

ICNF & IDRUP Example

Incremental
SAT Solver

8/12

IDRUP-CHECK – Checking Incremental Proofs

INTERACTION_HEADER

PROOF_HEADER

 p icnf

INTERACTION_INPUT

 p idrup

reading from ICNF interaction file reading from IDRUP proof file

end-of-checking

 $

PROOF_INPUT

 i

PROOF_QUERY

 q i

 l | d | r | w l | d | r | w

PROOF_CHECK

 q

 l | d | r | w

INTERACTION_SATISFIABLE?

 s SATISFIABLE

INTERACTION_UNSATISFIABLE?

 s UNSATISFIABLE

INTERACTION_UNKNOWN

 s UNKNOWN

INTERACTION_SATISFIED!

 s SATISFIABLE

INTERACTION_UNSATISFIED!

 s UNSATISFIABLE

s UNKNOWN

PROOF_CORE

 u

PROOF_MODEL

 m

 m u

9/12

Experiments

■ Hardware Model Checking Competition Benchmark set (2017), 300 instances
■ Limits: 16 GB memory, 1000 second, maximum bound: k = 100

→ at most 101 incremental SAT query for each instance

10/12

Results

■ Very small overhead of proof writing
■ Reasonable proof checking time (∼ 2x)

11/12

Outline

Preliminaries & Motivation

Our Contributions

Conclusion

Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of SAT-based Model Checkers

■ IDRUP-CHECK: First prototype to check IDRUP proofs
□ First incremental proof checker

■ Promising preliminary results in HW model checker CaMiCaL

■ Future Work:

□ more evaluation (e.g. in IC3)

□ backward proof checking, trimming

□ verify proof checker

□ incremental LRAT

Thank you!

12/12

Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of SAT-based Model Checkers

■ IDRUP-CHECK: First prototype to check IDRUP proofs
□ First incremental proof checker

■ Promising preliminary results in HW model checker CaMiCaL

■ Future Work:

□ more evaluation (e.g. in IC3)

□ backward proof checking, trimming

□ verify proof checker

□ incremental LRAT

Thank you!

12/12

Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of SAT-based Model Checkers

■ IDRUP-CHECK: First prototype to check IDRUP proofs
□ First incremental proof checker

■ Promising preliminary results in HW model checker CaMiCaL

■ Future Work:

□ more evaluation (e.g. in IC3)

□ backward proof checking, trimming

□ verify proof checker

□ incremental LRAT

Thank you!

12/12

Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of SAT-based Model Checkers

■ IDRUP-CHECK: First prototype to check IDRUP proofs
□ First incremental proof checker

■ Promising preliminary results in HW model checker CaMiCaL

■ Future Work:

□ more evaluation (e.g. in IC3)

□ backward proof checking, trimming

□ verify proof checker

□ incremental LRAT

Thank you!

12/12

Conclusion & Future Work

■ Standardize input and proof format for incremental use cases of SAT solvers.
→ Gain verifiable results
→ Increase trustworthiness of SAT-based Model Checkers

■ IDRUP-CHECK: First prototype to check IDRUP proofs
□ First incremental proof checker

■ Promising preliminary results in HW model checker CaMiCaL

■ Future Work:

□ more evaluation (e.g. in IC3)

□ backward proof checking, trimming

□ verify proof checker

□ incremental LRAT

Thank you!

12/12

	Preliminaries & Motivation
	Our Contributions
	Conclusion

