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Abstract

Bounded model checkers show the validity of a property of a hardware or software system to hold up to a certain bound
by solving a sequence of related Boolean satisfiability (SAT) problems. An incremental SAT solver, a tool often used
by such model checkers, can exploit similarities between these consecutive SAT problems. By avoiding repeated work
incremental solving is much more efficient. To increase the trustworthiness of a model checker, it is however important
to provide assurance about the correctness of its underlying solving engine. Though modern SAT solvers are expected to
produce an independently verifiable certificate when a formula is unsatisfiable, incremental SAT solving involves multiple
formulae under different temporary assumptions. In this paper we propose a new proof format for SAT solvers applicable
to incremental use cases and demonstrate the viability of it in the context of bounded hardware model checking.

1 Introduction

In a wide range of applications, such as Hardware Model
Checking (HWMC) [1, 2, 3], planning [4] or solving
Satisfiability modulo Theories (SMT) problems [5] a
sequence of related SAT problems need to be solved. For
these applications incremental solving using a single solver
instance for the whole sequence is greatly beneficial.
Bounded model checking (BMC) [6], for instance,
encodes into propositional logic only those parts of the
system under verification that are reachable up to a given
bound k, starting with k = 0 for the initial reset state,
and then increasing k, by adding appropriate next-state
logic. If the encoded formula was found to be unsatisfiable
by a SAT solver, the encoding is extended with further
possible steps of the system. This extension-evaluation
interplay is repeated until either the property is violated, or
a high enough bound (e.g. k = 1000 in the hardware model
checking competition [7, 8]) of unrolling steps is reached.
Extending an already built and solved SAT formula with
further constraints, instead of constructing and solving
new formulas in each step, allows to reuse incrementally
the same SAT solver instance. The goal of incremental
SAT solvers is to exploit the shared constraints between
consecutive SAT queries of such use cases and thereby
avoid repeated work and reduce solving time [9, 10].
State-of-the-art SAT (and SMT) solvers are quite complex
software, already for stand-alone non-incremental usage.
This complexity stems from their logically involved
algorithms, sophisticated data-structures and further low-
level optimizations. In order to trust their results, the SAT
community has adopted a certification approach, and since
2016 solvers participating in the main track of the annual
competition have to produce certificates [11].
For satisfiable queries a satisfying assignment produced
by the SAT solver acts as certificate and easily allows
to check correctness. For unsatisfiable queries the SAT
solver is required to produce a machine checkable proof
certificate instead. However, for incremental usage there

is no standardized proof format, even though incremental
solving adds another level of complexity and thus can be
considered to be even more error-prone.
This lack of trust in incremental solvers lifts of course
to applications relying on the efficiency of incremental
solving. Hence, it is essential to gain more assurance that
an employed solver is indeed correct. In related work
on certifying hardware model checking [12, 13, 14, 15]
monolithic certificates are checked by non-incremental
SAT solvers. This will become a severe bottle-neck
when the actual model checking makes use of incremental
solving. One of our main motivations of this paper is to
explore as alternatives either using incremental proofs in
this context or making such incremental proofs accessible
to theorem provers.
In this paper we propose a way to extend the proof
generation method of SAT solvers such that it can provide
incremental proofs where unsatisfiability under a set of
assumptions is explicitly shown and justified. Beyond
generating incremental proofs, we also present how to
extend standard proof checking techniques of SAT solvers
to be able to efficiently verify such incremental certificates.
At the end, we illustrate and evaluate the costs and benefits
of the proposed approach in our experiments in the context
of bounded hardware model checking with CAMICAL.
Our results show that the proposed techniques are scalable
and has acceptable overhead in solving time, while allows
users of model checkers to gain a higher trust in its results.

Overview
After preliminaries in Section 2, we introduce in Section 3
two new formats to capture incremental SAT queries and
their incremental proofs in succinct ways. Section 4
presents the semantics of our proposed proof format and
describes the implementation of our prototype checker for
that. After our experiments (Section 5), we conclude
by comparing to related work (Section 6) and briefly
discussing future work (Section 7).
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2 Preliminaries

Here we very briefly introduce the main concepts that are
used and referred to throughout the paper.

Satisfiability Problems
Given a set of Boolean variables V = {x0,x1, . . . ,xn}, a
literal is a variable (xi) or its negation (xi), a clause is
a disjunction of literals, and a propositional formula in
conjunctive normal form (CNF) is a conjunction of clauses.
When it is convenient and clear from the context, we will
refer to a formula as a multi-set of clauses, and to a clause
as a set of literals. A unit clause is a clause with exactly
one literal, while a clause without any literals is called the
empty clause. A (partial) truth assignment is a function
V →{⊤,⊥}, and a literal xi (resp. xi) is satisfied by a truth
assignments if it maps xi to true (resp. false). We will often
represent truth assignments by the set of those literals that
are satisfied by it. A clause is said to be satisfied by a truth
assignment if at least one of its literals is satisfied by it. A
truth assignment that satisfies every clause of a formula F
is called a model of F . The Boolean satisfiability problem
(SAT) is to decide the existence of a model for a given
multi-set of clauses. A formula is satisfiable if it has a
model, otherwise it is unsatisfiable.
The empty clause is unsatisfiable, and a unit clause ℓ can
be satisfied only by such assignments that satisfy ℓ and
falsify ℓ. Thus, when a formula F contains a unit clause ℓ,
satisfying it removes all clauses containing ℓ together with
every occurrence of ℓ from every clause of F . Satisfying
all unit clauses in F is called unit propagation and can be
repeated until either there is no more unit clause in F or one
of the clauses become empty. Given clauses C1 =C∨x and
C2 = C′ ∨ x, applying resolution on C1 and C2 on variable
x derives the resolvent clause C∨C′.
Modern SAT solvers are expecting SAT problems to be
formulated in the so-called DIMACS file format [16].
DIMACS files start with a header "p cnf |V| |F|"
(where |V | is the number of variables and |F | is the number
of clauses in formula F) followed by a list of each clause
of the formula. Clauses are represented as a list of their
literals ended with a "0", while literals are encoded as non-
zero integers. Figure 1 illustrates this format on a formula.

p cnf 4 4

-1 3 4 0

-1 3 -4 0

-2 -3 4 0

-2 -3 -4 0

Figure 1 This is the CNF formula (x1 ∨ x3 ∨ x4)∧ (x1 ∨
x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4) in DIMACS
representation. It is unsatisfiable if we further assume x1
and x2 to be true (x1 ∧ x2), or they are equal (x̄1 ∨ x2)∧
(x1 ∨ x̄2) and one of them is true (x1 ∨ x2), which are the
queries we are going to explore incrementally later on.

Queries of Incremental SAT Problems
An incremental SAT problem P = ⟨Q0, Q1, . . . , Qn⟩ is a
sequence of SAT queries where each query Qi = (∆i, Ai)
consists of a potentially empty set of clauses ∆i, and
a potentially empty set of assumptions Ai, where each
assumption is an arbitrary literal. The first SAT query
Q0 = (∆0, A0) is satisfiable if and only if ∆0 ∧ A0 is a
satisfiable formula, while for i > 0, Qi is satisfiable if and
only if (

∧i
j=0 ∆ j)∧Ai is a satisfiable formula. In principle,

we define incremental problems as a not decreasing set of
clauses solved under different sets of assumptions. From
that follows that a clause once added to the problem can
not be removed later. Thus, if (

∧i
j=0 ∆ j) is unsatisfiable,

every later query (Qk with k > i) is unsatisfiable as well,
independently from the literals in Ak. Note however
that clause deletion can be simulated with the help of
assumptions (as it is described for example in [9]).

Proofs of SAT Solvers
Modern SAT solvers are able to provide further output
and thereby let users to validate the correctness of the
reported satisfiability answers. When a SAT solver claims
that a formula is satisfiable, the found model serves as a
certificate of the claim. When a solver finds a formula
unsatisfiable, it can emit a proof during solving this
formula. This proof then describes every relevant formula
modification steps of the solver (e.g., learning new clauses,
or deleting unnecessary clauses) and thereby shows how
the empty clause is derivable from the given problem.
Deriving the empty clause from a set of clauses (in a sound
and complete proof system of propositional logic) proves
that the clauses are unsatisfiable together. Though the main
purpose of proofs is to certify unsatisfiable answers, it
is not known upfront if a given formula is satisfiable or
unsatisfiable. Thus, SAT solvers actually produce proofs
in both cases. However, if the problem is satisfiable, the
empty clause is not derived in the produced proof, that is,
it is not a refutation.
The most common proof formats of SAT solvers are
based on RUP (Reverse Unit Propagation) [17, 18] and
RAT (Resolution Asymmetric Tautologies) [19] inference
steps. RUP proofs are a sequence of clauses where each
clause Ci is either an input clause from the user or can be
derived from ∧i−1

j=0C j with a single RUP inference step. A
clause C has RUP w.r.t. a formula F (i.e., can be derived
from F with a RUP inference step) if unit propagation
on the conjunction of F and the negation of C leads to
a conflict. RAT proofs, beyond RUP steps, allow the
derivation of clauses by RAT inference steps. A clause
C has RAT w.r.t. a formula F if there is a literal l ∈ C
such that every possible resolution step on l in F derive
RUP clauses. Inference steps as RUP and RAT can be used
not just to add, but also to remove clauses from formulas.
When a clause of a formula (C ∈ F) can be derived from
the other clauses (i.e., has RUP or RAT w.r.t. F \C), it
can be removed from the problem without changing the
satisfiability of F . When SAT solvers include such deletion
steps in their produced RUP (resp. RAT) proofs, the proof
is called DRUP (resp. DRAT).



In this paper we focus on proofs produced during
incremental SAT solving. Clause learning and clause
deletion steps in incremental use cases must fulfil certain
additional conditions. Without going more into the details
of these conditions (see [20] for these details), we will
assume here that the produced proofs contain only RUP
based clause addition steps and RUP or RAT inference
based clause deletion steps.

Checking SAT Proofs
Checking each clause addition step in a SAT proof by an
independent, simple, maybe even verified, proof checker
provides the assurance that the solver gave a correct
UNSAT answer. A RUP clause addition step can be
checked based on the definition of RUP, namely, the
negation of the clause is propagated over all the present
clauses. If that propagation falsifies one of the clauses,
the addition of the clause was correct. In case the
propagation does not lead to a conflict, proof checking
fails and stops with an error. Note that clause deletion
steps are not checked in that process, since removing a
clause can never turn an originally satisfiable problem
into an unsatisfiable one. Nevertheless, clause deletion
information can speed up proof checking substantially
since it reduces the number of clauses that must be iterated
through during unit propagation in RUP checks.
Incremental inprocessing SAT solvers actually can employ
two kinds of clause deletion steps: temporary deletion
and permanent deletion (also called “weaken” and “drop”,
for more details see again [20]). In the existing
standard clausal proof formats of SAT solvers these steps
can not be distinguished. Though there are possible
workarounds [21], as we will see it later, our proposed
proof format provides a way to address this problem too.
In general, since the size of SAT proofs can be extremely
large (see [22] for an extreme example), having an efficient
proof checker is a complex but important challenge. Proofs
can be checked either forward or backward [17, 23].
Forward checking verifies each clause addition step in the
same order as they were done by the solver, hence can be
done even on-line, during solving. Backward checking
verifies clause addition steps in a reverse order, starting
from the empty clause. Therefore, it can start only once
solving is finished, but it allows the checker to check only
those clauses that are actually used in the refutation.

3 Interactions and their Proofs

The interaction between a user and a SAT solver is very
limited in non-incremental use cases: the user gives a
set of input (original) clauses to the solver and the solver
decides if it is SAT or UNSAT. This one-time input and
single query of the user is perfectly captured by DIMACS
(see again Fig. 1). Further, a DIMACS file together with
the proof produced by the SAT solver contains sufficient
information to verify the correctness of an UNSAT answer.
In incremental use cases, however, more than one
satisfiability problem is asked to be solved by the
same SAT solver instance. One could use DIMACS

<icnf> = <comments> "p icnf\n" <lines>

<comments> = { <comment> "\n" }

<lines> = { <comment> "\n" | <line> "\n" }

<comment> = "c" " " <anything-but-new-line>

<line> = <tag> " " { <literal> " " } "0"

| "s" " " <status>

<tag> = "i" | "q" | "u" | "m"

<status> = "SATISFIABLE"

| "UNSATISFIABLE"

| "UNKNOWN"

<literal> = <pos> | <neg>

<pos> = "1" | "2" | ... | <INT_MAX>

<neg> = "-" <pos>

Figure 2 Syntax of the ICNF file format. Choices are
separated by vertical bars, while the application of the
Kleene star operation is marked with curly brackets.

to describe each SAT query independently from each
other, by repeating all the reoccurring clauses and adding
assumptions as unit clauses. But doing so would transform
an incremental problem sequence into a set of independent
SAT problems, and thus would prevent the exploitation
of incremental SAT solvers. In general, note that the
total sum of the number of clauses in these independent
problems grows quadratically. Further, an UNSAT answer
in incremental use cases most often means unsatisfiability
w.r.t. a given set of assumptions. In this situation, the
produced proof of the incremental SAT solver is actually
not a refutation, because the empty clause is not derived.
Thus, the standard SAT proof checking techniques are not
applicable on these proofs directly.
From that follows that current standard formats and
techniques of SAT solvers and proof checkers are not
adequate for complete proof checking in incremental use
cases. Therefore, we first introduce ICNF, a new input
format that exactly captures the interaction between user
and solver that we would like to verify by proof checking.
Then, we introduce IDRUP as an extension to DRUP, a
commonly used SAT proof format, so that it is suitable
to capture proofs of incremental SAT problems. Both
our proposed input and proof format extends already
established standard formats of SAT solvers and thus
can be produced with minimal modifications to already
existing solvers and tools.

3.1 The ICNF Format
The authors in [24] introduced a file format called ICNF,
where one could describe in a single file a fixed set of input
clauses and multiple sets of assumptions. We refine and
extend this format so that it can describe every formula-
related interaction between user and solver and thereby can
capture arbitrary incremental problem sequences.
The syntax of a sequence of incremental SAT queries
(i.e., interactions) in our ICNF format is presented in
Figure 2. The header line of ICNF files consists of
p icnf, notably without the exact number of variables
or clauses of the problem. Beyond the header line and
comments, the file captures every relevant interaction



s.clause(-1, 3, 4);

s.clause(-1, 3,-4);

s.clause(-2,-3, 4);

s.clause (-2,-3,-4);

s.assume (1); // 1 assumed

s.assume (2); // 2 assumed

assert(s.solve () == 20);// UNSAT

assert(s.failed (1)); // 1 in core

assert(s.failed (2)); // 2 in core

s.clause(-1, 2) // additional

s.clause( 1,-2) // clauses

assert(s.solve () == 10);// SAT

assert(s.val (1) < 0); // 1 is false

assert(s.val (2) < 0); // 2 is false

s.clause( 1, 2); // add clause

assert(s.solve () == 20);// UNSAT

p icnf

i -1 3 4 0

i -1 3 -4 0

i -2 -3 4 0

i -2 -3 -4 0

q 1 2 0

s UNSATISFIABLE

u 1 2 0

i -1 2 0

i 1 -2 0

q 0

s SATISFIABLE

m -1 -2 0

i 1 2 0

q 0

s UNSATISFIABLE

u 0

Figure 3 Interaction with a SAT solver through its API
(above) and the corresponding ICNF file (below). The
C++ code follows the interface of CADICAL [25], but
similar functionalities are available in the standard C API
of incremental solvers (IPASIR [26]) as well.

between the user and the incremental SAT solver:
Input clauses ("i"): A clause addition step is expressed
as in the DIMACS format (i.e., literals are encoded as
integers and the end of the clause is specified by 0).
Queries ("q"): A query command indicates that the solver
is asked to solve the current formula (all clauses that were
given before this line) under the here defined (possibly
empty) set of assumption literals.
Status ("s"): Records the answer of the SAT solver for
the previous query (i.e., the last "q" line).
Models ("m"): The line represents the model given by the
SAT solver after receiving a satisfiable answer. The model
is meant to satisfy all input clauses.
Unsatisfiable cores ("u"): After the user receives
an unsatisfiable answer this line lists all the failed
assumptions of the last query. The SAT solver claims

<idrup> = <comments> "p idrup\n" <lines>

...

<tag> = "i" | "q" | "u" | "m"

| "l" | "d" | "w" | "r"

...

Figure 4 Syntax of the incremental IDRUP format. Only
differences to the ICNF syntax in Fig. 2 are shown.

p idrup

i -1 3 4 0

i -1 3 -4 0

i -2 -3 4 0

i -2 -3 -4 0

q 1 2 0

l -4 -2 -1 0

l -2 -1 0

d -4 -2 -1 0

s UNSATISFIABLE

u 2 1 0

i -1 2 0

i 1 -2 0

q 0

s SATISFIABLE

m -1 -2 -3 -4 0

i 1 2 0

q 0

l 2 0

l -1 0

l 0

s UNSATISFIABLE

u 0

Figure 5 An IDRUP proof matching the ICNF SAT
solver interactions in Fig. 3. The main difference is in
the header and the additional formula manipulation steps
("l" and "d" lines).

they form an unsatisfiable core (the input clauses are
unsatisfiable when assuming these literals).
Note that the format allows to interleave clause additions
and query lines (in contrast to the ICNF use in [27]).
Since ICNF is meant to describe the interaction between
users and SAT solvers, the order of the commands is very
important and, as we will see it later, forms the base of
synchronization with the produced proof of the solver.
Figure 3 illustrates how different API calls of a SAT solver
are expressed in the proposed ICNF format.

3.2 The IDRUP Format
Our proposed incremental proof format IDRUP extends
ICNF in the same way as the DRUP format extends
DIMACS by listing learned clauses (also called “derived”
or “lemmas”) and deleted clauses. A major difference is
to require all the original input clauses to be repeated in
the proof. In this regard the ICNF interactions file forms a
subsequence of the IDRUP proof.



The syntax of IDRUP, our proposed incremental DRUP
proof format, is described in Figure 4. The header of this
format is "p idrup", similar to ICNF. Input clauses, SAT
queries, solver answers, models and unsatisfiable cores are
represented the exact same way as in ICNF (with tags "i",
"q", "s", "m" and "u"). Including these lines in a proof
is essential to synchronize between the incremental SAT
queries and the proof.
Beyond these input and query related commands, there
are additional proof tags introduced to capture the formula
manipulation steps of the solver. An incremental proof
describes which clauses were added to and removed from
the formula, just as the proofs of non-incremental solvers.
However, in contrast to standard SAT proof formats, we are
more precise regarding these clause addition and deletion
steps. First of all, the format supports two kinds of
clause deletions steps: drop (indicated by prefix "d")
and weaken (tagged with "w"). Dropped clauses are
completely eliminated from the formula (and thus can be
ignored during checking in following steps of the proof).
Weakened clauses are removed from the active formula
as well, but they might be reintroduced in later steps,
thus their deletion must be seen as temporary. The
clause addition steps are also refined compared to the
non-incremental SAT proof formats. There are clauses,
indicated by the prefix "l", that are added to the
problem because they are derived somehow and then
learned by the solver (e.g. during conflict analysis [28] or
preprocessing [29]).
Then, there are those added clauses that are reintroduced
by a restore step (marked with tag "r"), i.e., by a step that
is undoing a previous weakening step of the solver. Note
that in non-incremental SAT problems it is guaranteed that
none of the previously weakened clauses will be restored,
hence in the non-incremental case there was no need to
distinguish drop from weaken steps, nor learned from
restored clauses. For a more formal description of these
incremental-specific solver steps see [20, 21].
Continuing our example started in Figure 3, Figure 5
illustrates the corresponding incremental proof of the
presented SAT queries.

4 Checking Incremental Proofs

First we describe the main steps of proof checking on an
abstract level, then we provide more details about how to
implement such a method. To keep things simple, we only
consider forward checking of proofs in this paper.

4.1 Semantics
The state of proof checking can be captured on an abstract
level by two multi-sets of clauses:

the active clauses FA and passive clauses FP,

both initially assumed to be empty. Given an IDRUP file,
the following function (where t(Li) is the tag of line Li)
describes how each line Li of it updates the current state of
the proof checker.

(F i+1
A ,F i+1

P ) =



(F i
A ∪{Li},F i

P) if t(Li) = "i"
(F i

A ∪{Li},F i
P) if t(Li) = "l"

(F i
A \ {Li},F i

P) if t(Li) = "d"

(F i
A \ {Li},F i

P ∪{Li}) if t(Li) = "w"

(F i
A ∪{Li},F i

P \ {Li}) if t(Li) = "r"

(F i
A, F i

P) otherwise.

Input clause addition steps by the user ("i" lines) add a
clause to the active set and need to be validated that it is
indeed the next added clause in the ICNF file. Lemma
addition steps ("l" lines) on the other hand need to be
checked to have RUP w.r.t. the current active formula (F i

A).
Clause deletion ("d") and weakening steps ("w" lines) are
only allowed to remove a clause if the clause is currently
present in F i

A. In the case of weakening the clause is made
passive while for deletion it is just dropped.
Similarly, a restore step ("r" lines) can be applied only on
a clause if it is currently present in the passive formula (F i

P).
Though restore steps of SAT solvers must fulfil further
constraints in order to ensure that solution reconstruction
works properly (see [20]), we omit any checks in this
direction as we require proofs and interactions to have
models satisfying the original input clauses (and not just
the remaining active clauses). In any case, it must be
ensured that no arbitrary clauses are introduced to the
formula by these restore steps, hence the checking of the
existence of weakened and restored clauses is unavoidable
in incremental proofs.
Further, note that both F i

A and F i
P are multi-sets, i.e., in

theory, the same clause can be added, removed and
restored multiple times and a proof checker must be
able to handle multiplicity correctly. Status lines ("s"
lines) do not modify the state of the proof checker but
serve as synchronization points between the proof and the
interaction files. In case the answer is satisfiable, the
justification of it, i.e., the following "m" line, defines a
satisfying assignment. This assignment is checked whether
it indeed satisfies not just every input clause provided until
that point in the ICNF file, but also every assumption
of the current query (i.e. of the most recent "q" line).
Unsatisfiable answers are justified by a following "u" line,
that defines a subset of the assumptions of the current query
that makes the problem inconsistent.

4.2 Implementation details
There are several technical challenges and questions
regarding the implementation of a proof checker for our
proposed IDRUP proof format. In order to demonstrate
that our approach is practically viable, we implemented
and describe the IDRUP proof checker IDRUP-CHECK.
The proof checker reads and checks both the ICNF and
the IDRUP file in parallel according to the state-machine
shown in Fig. 6. After checking headers in both files
the input clauses are read from the ICNF interactions file
and matched against input lines (in the same order) in the
IDRUP proof file.



INTERACTION_HEADER

PROOF_HEADER

 p icnf

INTERACTION_INPUT

 p idrup

reading from ICNF interaction file reading from IDRUP proof file

end-of-checking

  $    

PROOF_INPUT

 i 

PROOF_QUERY

 q  i 

 l | d | r | w  l | d | r | w

PROOF_CHECK

 q 

 l | d | r | w 

INTERACTION_SATISFIABLE?

 s SATISFIABLE 

INTERACTION_UNSATISFIABLE?

 s UNSATISFIABLE 

INTERACTION_UNKNOWN

 s UNKNOWN 

INTERACTION_SATISFIED!

 s SATISFIABLE 

INTERACTION_UNSATISFIED!

 s UNSATISFIABLE 

s UNKNOWN

PROOF_CORE

 u 

PROOF_MODEL

 m 

 m  u 

Figure 6 The state machine based implementation of the proof checker IDRUP-CHECK interleaves parsing and
checking lines from the ICNF interactions file (rectangular states) and from the IDRUP proof file (oval states). If all
queries in the ICNF file are justified and all implicit checks (lines match, lemmas are implied, deleted clauses exists
etc.) also go through then the checker exists with success.

As input clauses can be simplified in the DIMACS parser
of the SAT solver by for instance unit propagation, it
is possible that the SAT solver starts producing lemmas
before it has consumed all input clauses for the next query.
This is taken care of by accepting for instance "l" lines
in the PROOF_INPUT state. After a sequence of such "l",
"d", "w" or "r" lines the saved input clause from the
ICNF file has to occur in the IDRUP file too.
As soon a query is recorded in the ICNF file the
same query with matching assumptions has to occur in
the IDRUP file. This marks usually the starting point
of a long sequence of lemmas and deletions generated
in the CDCL loop [28] of the SAT solver interleaved
with inprocessing steps [30], most prominently bounded
variable elimination [31, 29], which on top of adding and
deleting lemmas also weakens clauses. These weakened
clauses are usually irredundant clauses which are subject
to being restored later. They are moved from the active to
the passive set as explained in the previous section.
In our current set-up, using CADICAL as SAT solver,
restoring clauses only happens initially right after entering
the PROOF_CHECK state. Then the restored clause is moved
from the passive clause set to the active clause set. If the
clause attempted to restore can not be found in the passive
set IDRUP-CHECK aborts with an error message.
The active clauses are watched by a two-watched literal
scheme [32] to facilitate implication checks by unit
propagation. These watches are also used to look-up and

find active clauses to be deleted and weakened. For passive
clauses, which are not propagated, a one-watched literal
scheme [33] is employed.
Implication checks are performed for lemmas as well as
to justify unsatisfiable cores. These core literals are also
checked to be a subset of the assumptions of the last query.
Models on both side have to be consistent, i.e., not contain
clashing literals, satisfy the assumptions of the last query
and satisfy all the input clauses. Accordingly input clauses
are saved and never deallocated even if deleted.
Proof checking is thus only successful if all lines match in
both files, the implicit checks described above succeed and
all queries observed in the ICNF file (the larger and golden
"q") have matching justifications (the larger and green "m"
or "u" lines) in the IDRUP file.

5 BMC Experiments

To evaluate our proof of concept implementation of
IDRUP-CHECK, we extended CAMICAL [20], a bounded
hardware model checker for the AIGER format [34], which
relies on incremental SAT solving, to produce ICNF
interaction files. The extension prints every interaction that
CAMICAL has with its SAT solver into a single ICNF
file. Then, we extended the DRUP generation features of
CADICAL [25], a state-of-the-art incremental SAT solver,
to be able to produce IDRUP proofs. Employing this



CAMICAL CADICAL

IDRUP-CHECK

SAT
interactions

ICNF IDRUP

AIGER
problem

Success
or Error

Figure 7 Our workflow to generate and check proofs
during incremental SAT based bounded model checking.

extended CADICAL in the extended CAMICAL led to a
workflow that is presented in Figure 7.
In our experiments we evaluated our approach on the
300 hardware model checking competition (HWMCC)
benchmarks from 2017 following [20]. Our cluster made
use of AMD Milan EPYC 7513 CPUs, with a space limit
of 16 GB of main memory usage and a timeout of 1 000 s
for both the model checker CAMICAL and separately for
running the proof checker IDRUP-CHECK. We further
limited the maximum checked bound to k = 100 steps.
Our experiments consist of at most 30300 = 300 · 101
incremental SAT solving calls. Some of the model checker
runs however terminate early as soon a query becomes
satisfiable or the time limit is reached, i.e., the running time
for one instance while increasing the checked bound from
k = 0 to a maximum of k = 100 reaches the time limit.
The plot on the left of Fig. 8 shows the time taken by
each individual incremental calls to the SAT solver, sorted
by the time taken. For each pair of benchmark and
reached bound k there is one call to the SAT solver and
thus one data point. The “only-solve” times are without
any proof generation and “write-proof-to-dev-null” is with
proof production but writing the proof to “/dev/null”.
Finally “write-proof-to-tmp” represents producing a proof
and writing the interaction and proof to files in “/tmp”
but again without proof checking. It turns out that proof
production without and with writing the proof has a
relatively small overhead compared to plain solving.
On the middle of Fig. 8 we compare the time for plain
solving without proof generation to the time taken for
proof checking, again for each bound individually. It takes
around a factor of two for proof checking (actually with
median 1.57) compared to plain solving, which we do
consider reasonable as it is in the order expected for DRUP
proofs (in the SAT competition solving time limit is 5 000
seconds while proof checking is 40 000 seconds).
Finally, the right of Fig. 8 plots the size of the produced
ICNF and IDRUP files (in MB) for those instances where
every step of the tool-chain successfully finished within its
time limit, sorted by size of each file. While average file
size of ICNF files in our experiment is 26 MB, the IDRUP
files are, on average, ∼8.5 times larger (220 MB). Note that
neither the input nor the proof files are in binary format.

6 Related Work

Existing proof formats of SAT solvers allow to capture
when a clause is deleted or added, but distinguishing
between deleted and weakened, or added and restored
clauses is not possible. Recent work [21] addressed this
problem by transforming proofs of incremental solvers
with restore steps into standard DRAT proofs by not
deleting those clauses that are later restored. This is a
workable solution enabling the use of non-incremental
proof checkers on proofs produced during incremental
solving. But it only verifies the very last query of an
incremental problem sequence and allows less clauses to
be ignored during proof checking, which increases proof
checking time. Our approach requires to modify the proof
checker, but provides a precise set of the actually present
clauses of the problem sequence at any point of time.
There is recent work on a more general proof format
VeriPB [35, 36, 37, 38], which makes use of Pseudo-
Boolean constraints and allows to capture reasoning steps
of a very wide range of methods, including cardinality
reasoning, symmetry breaking and Gaussian elimination.
But since incremental SAT solvers, due to the continuous
clause additions, usually do not use very advanced
reasoning techniques, the benefits of such an expressive
format in our context is limited. Even though VeriPB
was used in an incremental setting for core-based MaxSAT
solving [39] it does not support yet our generic form of
incremental solving proposed in this paper. But we do
believe that our solution can be applied to VeriPB too.

7 Discussion

In this paper we presented some essential first steps to
establish proper standards tailored towards the incremental
use cases of SAT solvers. Although preliminary results
are encouraging, several further steps have to be taken to
achieve a mature solution that is scalable and viable in
general. Here we discuss some of the current shortcomings
and limitations of our proposed approach that we are
planning to address in the near future.
First of all, it is intriguing future work to evaluate the
viability of our proposed certification approach in other
application domains of incremental SAT solvers, such as,
k-induction, interpolation or IC3 based model checkers,
SMT solvers and planners. However, our goal here
was to cover the most fundamental interactions between
users and solvers. There are several further practical
aspects of incremental solving that our approach needs
to address before further evaluations can begin. For
example, CADICAL allows users in incremental SAT
queries to define clause assumptions [40] additionally to
the considered literal assumptions in this paper. Such
queries are convenient and practical for instance for IC3,
thus relevant in solvers of model checkers.
Attaching an external user propagator [41] to the SAT
solver is another feature of increasing interest. It allows to
provide additional input constraints while solving a query
without being forced to eagerly encode them up-front. In
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principle we could allow to have clause addition steps
("i" lines) between SAT queries ("q" lines) and their
corresponding answers ("s" lines) and thus ICNF can
capture the formula affecting interactions with an external
user propagator. However, it remains future work to extend
the proof checker to support these use cases.
Further, our interaction and proof representation allows to
express partial models and unsatisfiable cores (depending
on the status of the solver) as atomic steps, while
IPASIR [26], the standard C interface of incremental SAT
solvers, does not provide functions to access the model or
core of a problem in a single call. Instead of requesting
models and cores as a whole, IPASIR only allows to query
the value of a single variable or whether it is a failed
assumption. For the next upcoming IPASIR-2 version it
is however already proposed to support such usage too.
Another interesting question is where to draw the line
between traced and untraced user interactions. Currently
we focus only on the formula to be solved, but the interface
of incremental solvers usually provide further interactions,
for example, freezing or melting variables or setting default
phases for some of them. These details for proof checking
are irrelevant, but optionally ICNF could store them. A
standardized API for setting options is for instance also
discussed for IPASIR-2. With such extensions, ICNF
could function as a tracing language that can be used for
example for debugging solvers.
As Figure 8 shows, the size of the produced incremental
proofs can be substantial, which is not completely
unexpected, as each incremental proof consists of a
sequence of SAT proofs, certifying both SAT and
UNSAT queries of the solver. Still, there is a large
room for improvements in this regard in our prototype
implementation, with extending IDRUP-CHECK to support
proofs in binary format as an obvious first step.
Our current implementation is rather strict about the
format of the ICNF and IDRUP files. More flexibility
could allow to treat many details (e.g. found models or
cores) as optional. Another extension would be to move
from forward to backward proof checking. This opens
up the possibility to trim produced proofs too. However,
one potential benefit of forward checking could be the
possibility to send proofs directly to an on-line checker
during SAT solving avoiding to store the proof on disk.

Going beyond improving implementation details of
IDRUP-CHECK, in [42, 43] it was shown that native
support in the SAT solver of the more detailed LRAT [44]
proof format reduces non-incremental proof checking time
substantially. An incremental version of LRAT is expected
to provide the same benefits.
The way how weakened, deleted, and restored clauses
are handled during proof checking makes it evident that
IDRUP-CHECK only verifies the provided answer of the
solver, but not the actual steps that led to that answer.
As a SAT proof checker, it is the expected functionality.
An intriguing future work is to investigate how expensive
would it be to extend our format and checker with more
details, such that it can justify and verify all the individual
steps of the solver. Such proofs (but not necessarily the
refutations) could be beneficial in use cases where the SAT
solver must maintain certain properties of the models of the
formulas (e.g., in model counting or MaxSAT).
However, the more complicated the proof checker gets, the
harder it is to trust its correctness. During the development
of our workflow, we also implemented a prototypical
fuzzer for IDRUP. This tool already helped us to discover
several potential issues (not just in IDRUP-CHECK but even
in CADICAL), but it requires further improvements as the
implementation of IDRUP-CHECK progresses. In the very
long run, we aim to have a formally verified proof checker
for incremental DRUP or DRAT proofs.

8 Conclusion

Standard proof formats of SAT solvers, such as DRAT,
focus on certifying a single refutation of a single
unsatisfiable formula. Incremental SAT solvers, however,
solve multiple satisfiable or unsatisfiable formulas and in
order to increase the trust in the provided results beside
checking models one needs to make sure that sources of
inconsistency, i.e., provided unsatisfiable cores and failed
assumptions, are justified too. In this paper we introduced a
new SAT solver interaction and proof format that captures
incremental SAT queries and their corresponding proof
segments in a succinct way.
To demonstrate the viability and scalability properties
of our proposed approach, we developed a prototype



proof checker and evaluated it in the context of bounded
hardware model checking, a prime application domain of
incremental SAT solvers.
Our experiments show that the format is practical and has
the potential to support efficient certification, and thereby
verification, of incremental use cases of modern SAT
solvers. In future work our primary goals are to expand
the experimental evaluation, make proof checking more
efficient and general and in particular apply the approach
to other contexts including certification of hardware
verification problems beyond bounded model checking.
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