
Formal Methods in Computer-Aided Design 2023

SAT-Based Quantified Symmetric Minimization of
the Reachable States of Distributed Protocols

Katalin Fazekas
TU Wien

Vienna, Austria
katalin.fazekas@tuwien.ac.at

Aman Goel
Amazon Web Services§

Seattle, USA
goelaman@amazon.com

Karem A. Sakallah
University of Michigan

Ann Arbor, USA
karem@umich.edu

Abstract—Most of the recent published work on the automated
verification of distributed protocols has been concerned with
deriving an inductive invariant that implies a safety specification.
In this paper we argue that the inherent structural symme-
try of protocols strongly suggests the existence of a unique
property-independent formula rmin that describes a protocol’s
reachable states as a minimum-cost conjunction of quantified
first-order logic predicates. We show, for finite instances, that
these predicates correspond to symmetry orbits of prime im-
plicates, and show how they are derived using a novel SAT-
based logic minimization algorithm which relies on the connection
between symmetry and quantification as complementary ways
of representing these orbits. We also present empirical data
showing that the minimum-cost orbits derived for increasing
protocol sizes converge syntactically, reaching a fixed point at
a relatively small critical size. Our findings, thus, confirm earlier
observations about the cutoff and saturation phenomenon of
parameterized systems. To our knowledge, our approach is the
first to algorithmically derive quantified first-order logic formulas
for the reachable states of unbounded parameterized systems,
enabling the verification of any safety property.

Index Terms—Distributed protocols, logic minimization, invari-
ant inference, symmetry, quantifier inference.

I. INTRODUCTION

Driven by the availability of modern Satisfiability Modulo
Theories (SMT) solvers [1], [2], the last few years have seen
increasing interest in finding ways to automate the analysis
and verification of distributed protocol specifications. Most of
the recent published work [3]–[9] has been concerned with
deriving an inductive invariant in quantified first-order logic
(FOL) that serves as a proof certificate of a protocol’s safety
property.

In this paper we argue that (an enhanced version of) clas-
sical logic minimization adds a new perspective that furthers
our understanding of protocol behavior. Specifically we show,
for a restricted class of protocol specifications, that it is
possible to algorithmically derive a formula rmin that encodes
the reachable states as an exact minimum-cost conjunction of
quantified FOL invariants. For this purpose, we define the cost
of a quantified invariant in prenex normal form (PNF) to be the
sum of the number of quantifiers in its prefix and the number
of literals in its matrix.

Key to deriving these minimum-cost formulas for the reach-
able states is the inherent structural symmetries of proto-

§Work does not relate to Aman Goel’s position at Amazon

col specifications as well as the recently-established connec-
tion between symmetry and quantification [6]. Applied to
finite protocol instances, our proposed Quantified Symmetric
Minimization (QSM) algorithm preserves these symmetries in
both the prime implicant (PI) generation and set covering
phases of the classical Quine-McCluskey (QM)1 algorithm.
In addition, it replaces the unscalable tabular procedures in
QM with scalable alternatives based on incremental SAT
solving [10], [11]. Empirically, we also show that the finitely-
quantified reachable state formulas generated by QSM at
increasing protocol sizes reach a syntactic fixed point at a
critical cutoff size and yield the minimum formula for the
reachable states of the unbounded protocol. We believe this to
be a direct consequence of the restrictions (elaborated later)
on the class of protocols we consider, but leave a rigorous
formal proof as future work.

The invariants in the rmin formula will be shown to be prime
implicate symmetry orbits of the reachable states and that they
represent the complete set of strengthening assertions needed
to establish the validity of any safety property S . Intuitively,
if rmin → S is valid, then S holds. However, the simplest
explanation of why S holds might be a minimal subset of
rmin ’s orbits that acts as its strongest strengthening assertion.

Our key contributions include:

• A novel symmetry-aware SAT-based logic minimization
algorithm that utilizes structural symmetry and its con-
nection with quantification to derive an exact minimum-
cost representation of the original structurally-symmetric
formula as a finitely-quantified FOL formula.

• A novel forward-reachability algorithm that derives the
strongest complete property-independent quantified for-
mula rkmin representing the set of reachable states for a
protocol instance of size k .

• A simple property-independent procedure that derives
r1min , r

2
min , . . . for protocol instances with increasing

sizes until reaching convergence at a critical cutoff size
k∗, where rk

∗

min syntactically converges to rk
∗+1

min . At the
cutoff size, rmin represents the strongest and complete
inductive invariant that summarizes all protocol behaviors
for any size.

1The fact that QSM and QM have two identical initials is purely coinci-
dental.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 23 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-0497-3059
https://orcid.org/0000-0003-0520-8890
https://orcid.org/0000-0002-5819-9089
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_23
https://creativecommons.org/licenses/by/4.0/

• The first empirical demonstration of the cutoff phe-
nomenon for a collection of distributed protocols based
on deriving a quantified FOL formula rmin that encodes
the protocol’s reachable states for all sizes.

The paper is organized as follows: Section II provides pre-
liminaries and context. Section III details the QSM algorithm.
Section IV shows how QSM, applied to increasing protocol
sizes, reaches cutoff. Section V presents our experimental
evaluation with Section VI giving a brief survey of related
work. Section VII concludes the paper with future work
directions.

II. PRELIMINARIES AND CONTEXT

We assume familiarity with the basics of 2-valued Boolean
algebra including literals, minterms, prime implicants, and
prime implicates of an n-variable function f (x1, · · · , xn) as
well as basic notions from group theory including permutation
groups, cycle notation, orbits, etc., which can be readily
found in standard textbooks on Abstract Algebra [12]. We use
primes(f) to denote the disjunction of f ’s prime implicants,
i.e., its complete sum. On the other hand, the complete product2

of f is the conjunction of its prime implicates and can be
expressed as ¬primes(¬f). primes(f) can also be viewed as
a set and we define #lits(ρ) for ρ ∈ primes(f) to be the
number of literals in ρ.

A. Exact Two-Level Minimization

Exact two-level sum-of-product (SOP/DNF) minimization is
an optimization problem seeking to find a minimum-cost
subset of primes(f) that covers all of f ’s minterms. Math-
ematically, the problem can be stated as finding a Boolean
assignment to a set of selector variables zρ ∈ {0, 1}, for
ρ ∈ primes(f), that represents a solution to the following set
covering problem [13]:

minimize
∑︂

ρ ∈ primes(f)

cost(ρ)× zρ

subject to

⎛⎝ ⋁︂
ρ ∈ primes(f)

zρ ∧ ρ

⎞⎠ = f

(1)

where cost(ρ) ≜ #lits(ρ). This formulation can also be used
to find a minimum-cost product-of-sums (POS/CNF) solution
by applying De Morgan’s law to the minimum-cost SOP
solution of ¬f .

B. The Quine-McCluskey Algorithm

The classical Quine-McCluskey (QM) algorithm [14]–[16]
solves this problem by first deriving primes(f) using a tabular
procedure starting from f ’s minterms, followed by a branch-
and-bound search to find the optimal solution to (1). Both steps
assume an explicit listing of f ’s minterms. In particular, the
set covering problem is represented as a 2-dimensional {0, 1}
prime implicant chart whose rows and columns correspond,

2Sum and product are commonly used in the hardware logic design
literature. They are synonymous with disjunction and conjunction.

respectively, to f ’s minterms and prime implicants. A 1 (resp.
0) entry in row µ and column ρ indicates that minterm µ is
(resp. is not) covered by prime implicant ρ. In this encoding,
the optimization objective is stated as finding a minimum-cost
set of columns that covers all the rows.

C. Distributed Protocols

Our focus is the verification of distributed protocol specifica-
tions, i.e., protocols described at an abstraction level that hides
code implementation details that model network topology
and the effects of message interleaving, message loss, node
failures, etc. Such specifications are typically encoded in FOL
in such languages as TLA+ [17] or Ivy [18].

We specifically consider the class of multi-sorted data-
independent protocol specifications [19], [20] that satisfy the
following three requirements:

• The protocol sorts are unbounded sets of interchangeable
structurally-symmetric elements.

• The protocol actions are atomic and asynchronous, i.e.,
they occur one at a time and interleave arbitrarily.

• The protocol encoding is in the empty theory of FOL,
namely equality with uninterpreted functions.

This class encompasses a wide range of common protocols
and should be considered a starting point that does not exclude
future extensions to other types of protocols such as ones with
totally-ordered sorts.

For purposes of illustration, and without loss of generality,
in this paper we consider a protocol P defined over a single
unbounded sort node ≜ {n0,n1,n2, · · · } along with a) a
finite set of relations3 on node that serve as P’s state
variables, and b) a finite set of actions that capture P’s
state transitions. The elements of node are referred to as its
constants and are assumed to be indistinguishable; they can
be arbitrarily permuted without changing P’s behavior.

A predicate Ψ on P’s state variables is a closed quantified
FOL expression. In prenex normal form (PNF) it can be
expressed as Ψ ≜ Q1X1Q2X2 · · ·QnXn . ψ(X1,X2, · · · ,Xn)
where Qi ∈ {∀,∃}, Xi ∈ node and ψ is a quantifier-free
Boolean formula over P’s relations. Following standard prac-
tice, we define prefix (Ψ) as the string of quantifiers and bound
variables, and refer to ψ as matrix (Ψ). In the context of
minimization, we further define the quantified cost of Ψ as

qCost(Ψ) = #Q(prefix (Ψ)) + #lits(matrix (Ψ)) (2)

where #Q is the number of Ψ’s quantified variables.
We use Pk to denote a finite instance of P defined over

nodek ≜ {n0,n1, · · · ,nk−1} for k ≥ 1. Instantiating Pk ’s
relations with all possible combinations of its constants yields
Pk ’s state variables, denoted varsk , whose cardinality is⃓⃓

varsk
⃓⃓
=

∑︂
h ∈ relations

karity(h) (3)

Pk is structurally symmetric; its behavior remains invariant
under the action of Sym(nodek), the group of permutations

3The arity of these relations is typically between 1 and 4.

153

TABLE I: Sample explicit clause orbits and their implicit encoding by finitely-quantified FOL formulas

Partial Protocol Spec P
Domain: node ≜ {n0,n1,n2, · · · }
Relations: a : node ↦→ {0, 1}, b : node ↦→ {0, 1}

Finite Protocol Instance P3

node3 ≜ {n0,n1,n2}
vars3 = {a(n0), a(n1), a(n2), b(n0), b(n1), b(n2)}
Sym(node3): {(), (n0n1), (n0n2), (n1n2), (n0n1n2), (n0n2n1)}

Explicit Clause Orbit

(a(n0) ∨ b(n1)) ∧ (a(n0) ∨ b(n2)) ∧ (b(n0) ∨ b(n1) ∨ b(n2)) (a(n0) ∨ b(n0) ∨ b(n1) ∨ b(n2)) ∧
(a(n1) ∨ b(n0)) ∧ (a(n1) ∨ b(n2)) ∧ (a(n1) ∨ b(n0) ∨ b(n1) ∨ b(n2)) ∧
(a(n2) ∨ b(n0)) ∧ (a(n2) ∨ b(n1)) (a(n2) ∨ b(n0) ∨ b(n1) ∨ b(n2))

Implicitly-Quantified Orbit
∀3N ,M : (N = M) ∨ a(N) ∨ b(M) ∃3N : b(N) ∀3N , ∃3M : a(N) ∨ b(M)

qCost = 2 + 3 = 5 qCost = 1 + 1 = 2 qCost = 2 + 2 = 4

(a) ∀3 Quantification (b) ∃3 Quantification (c) Mixed ∀3∃3 Quantification

on a k -element set. In particular, Sym(nodek) partitions
Pk ’s variables, as well as any Boolean expressions on them
(conjunctions, disjunctions, etc.) into equivalence classes or
orbits. Given any finite set S k of syntactically “similar”
formulas on the variables of Pk and any f ∈ S k we define

orbitk (f) ≜ {g ∈ S k |∃π ∈ Sym(nodek) : π(f) = g} (4)

where π(f) is the result of applying the permutation π to f .
The set of orbits in S k will be denoted as orbs(S k).

We are particularly interested in clausal orbits and their
compact encoding as finitely-quantified FOL predicates. Ta-
ble I illustrates this concept with three example clausal orbits.
We assume that our generic protocol P has two unary relations
labeled a and b. Its finite instantiation with 3 nodes creates
6 variables and has 3! = 6 structural symmetries (identity, 3
swaps, and 2 rotations) expressed as node permutations in stan-
dard cycle notation. The example orbits in the table represent
a 6-clause orbit in column (a), a 1-clause orbit in column (b),
and a 3-clause orbit in column (c). Note that the set of clauses
in each of these orbits remains unchanged under the action of
the 6 permutations of node3. The effect of these permutations
is to simply reorder the literals and clauses in each orbit
while preserving logical equivalence. Logical invariance, in
fact, is a direct consequence of two properties of conjunction
and disjunction: idempotency (x ∧ x = x , x ∨ x = x) and
commutativity (x ∧ y = y ∧ x , x ∨ y = y ∨ x).

The last row in Table I shows the finitely-quantified FOL
formulas that encode these clause orbits. To emphasize that
the quantification is over the finite node3 set, we use the con-
vention of annotating the universal and existential quantifiers
with a “3” superscript. Each of these formulas are derived by
the mechanical quantifier inference procedure from [6]. This
procedure is based on a syntactic analysis of any clause in the
orbit (basically the number and distribution of sort constants in
the clause’s relations) and guarantees that instantiating the uni-
versal and existential quantifiers in these formulas over node3

yields the exact set of clauses in the corresponding explicit
orbits, except possibly for potential duplicates and tautologies.
The correspondence between an explicit orbit orbitki and its
finitely-quantified encoding Ψk

i can be expressed by a pair of

related functions as

Ψk
i = qInf (orbitki)

orbitki = qIns(Ψk
i)

(5)

where qInf performs finite quantifier inference whereas qIns
performs finite quantifier instantiation.

D. An Example rmin Formula

Before describing the steps for deriving rmin , let’s illustrate it
for a specific example. Consider the TLA+ specification [21]
of the Transaction Commit (TC) protocol [22]. This protocol
is based on a single sort for representing resource managers
and four unary relations working , prepared , committed , and
aborted . Denoting these relations by their initials, the mini-
mum formula produced by QSM for the protocol’s reachable
states converged syntactically at a finite instance with 2 re-
source managers yielding the following eight-orbit expression:

rmin(TC) =
⋀︂

1⩽i⩽8

Ψi

Ψ1 = ∀R.(a(R) → ¬w(R))

Ψ2 = ∀R.(a(R) → ¬p(R))

Ψ3 = ∀R.(a(R) → ¬c(R))

Ψ4 = ∀R.(p(R) → ¬w(R))

Ψ5 = ∀R.(c(R) → ¬p(R))

Ψ6 = ∀R.(c(R) → ¬w(R))

Ψ7 = ∀R.(w(R) ∨ p(R) ∨ c(R) ∨ a(R))

Ψ8 = ∀R1,R2.

c(R1) ∧ ¬c(R2) ∧ ¬p(R2) → (R1 = R2)

(6)

An unbounded quantified SMT query showed that this formula
is indeed an inductive invariant for TC. Checking if TC
satisfies any desired safety property S can now be achieved by
showing that rmin(TC) → S is valid. More interestingly, the
shortest strengthening assertion that explains why S holds can
be seen as a minimal subset of the eight orbits in (6). Denoting
this subset by Amin(TC,S) it can be found using a minimal
unsatisfiable subset (MUS) extractor, such as MARCO [23],
from the UNSAT CNF formula

Amin(TC,S) = MUS [(rmin(TC)∧S)∧T∧¬(r ′min(TC)∧S ′)]

154

where T is the transition relation, the primes indicate a vari-
able’s next state, and the clauses of rmin(TC) are highlighted
to emphasize that they are treated as soft clauses by the
MUS extractor. For example, given the following two safety
properties for TC,

S1 = ∀R1,R2.(¬a(R1) ∨ ¬c(R2))

S2 = ∀R1,R2.(¬w(R1) ∨ ¬c(R2))

we can show that their shortest respective proof certifi-
cates/strengthening assertions are:

Amin(TC,S1) = Ψ2

Amin(TC,S2) = Ψ4

III. QSM: SAT-BASED QUANTIFIED SYMMETRIC
MINIMIZATION

The QSM minimization algorithm seeks to derive a minimum-
cost finitely-quantified formula for rk , the set of reachable
states of Pk . To achieve this, it takes advantage of two features
of these formulas. The first, obvious, feature is the structural
symmetry of Pk . QSM preserves this symmetry by operating
on prime implicant orbits rather than on individual prime
implicants. The second, less obvious, feature is that the number
of Pk ’s reachable states is almost always much smaller than
the number of its unreachable states. This suggests seeking a
minimum-cost CNF, rather than DNF, solution. Before delving
into the detailed description of QSM, it is helpful to understand
its operation at a very high level as

Pk QSM−−−→ rkmin = ∧
1⩽i⩽l

Ψk
i (7)

In other words, QSM produces a minimum-cost conjunction
of l finitely-quantified FOL formulas where each Ψk

i captures
an orbit of rk ’s prime implicates.

In contrast to (1), the minimization problem for rk can now
be stated as finding a Boolean assignment to a set of selector
variables zωk , for ωk ∈ orbs(primes(¬rk)), that represents a
solution of the set covering problem

min
∑︂

ωk ∈ orbs(primes(¬rk))

qCost(qInf (¬ωk))× zωk

s.t.

⎛⎝ ⋁︂
ωk ∈ orbs(primes(¬rk))

zωk ∧ ωk

⎞⎠ = ¬rk
(8)

Viewed as a formula, each such orbit ωk is a disjunction
of symmetric prime implicants; thus, its negation ¬ωk is a
conjunction of symmetric prime implicates, i.e., a clausal orbit.
This explains the particular choice of the cost metric in (8).

The derivation of rkmin in QSM is a deterministic mechanical
procedure consisting of the following four steps:

1) A BDD-based forward image computation [24] to pro-
duce a DNF representation of rk .

2) A SAT-based procedure to generate the set of prime
implicant orbits of ¬rk .

Algorithm 1 Symmetry-Aware Enumeration of PI Orbits

1 procedure EnumeratePIOrbits(¬rk)
2 ¬rkD ← dualRail(¬rk)
3 i ← 1, m ← |varsk |, primeOrbits ← ∅
4 while i ≤ m do
5 (found , ρD) ← SAT?[¬rkD ∧

∑︁
1⩽j⩽m

(x p
j + xn

j) ⩽ i]

6 if found then
7 ω ← orbitk (singleRail(ρD))
8 primeOrbits ← primeOrbits ∪ {ω}
9 ¬rkD ← ¬rkD

⋀︁
ρ ∈ ω

dualRail(¬ρ)

10 else
11 i ← i + 1
12 return primeOrbits

3) A quantifier-inference procedure qInf from [6] that out-
puts a finitely-quantified FOL formula for each prime
implicate orbit of rk along with its qCost .

4) A branch-and-bound set covering procedure that finds the
minimal number of prime implicate orbits that cover rk

using their quantified cost as the minimization objective.

A. Symmetry-Aware Enumeration of Prime Implicant Orbits

The PI enumeration algorithm operates on the CNF formula
representing ¬rk and is based on a dualRail encoding of the
state variables [25], [26]. Specifically, each state variable x is
encoded using two fresh variables xp and xn according to

xp xn x
0 0 d
0 1 0
1 0 1
1 1 invalid

where d stands for don’t-care. The dualRail version of ¬rk is
obtained by replacing all positive (resp. negative) appearances
of x with xp (resp. xn) and by adding the clause (¬xp∨¬xn)
to exclude the invalid combination. This encoding is reversible:
given any conjunction (model) or disjunction (clause) of ¬rk
we use dualRail(¬rk) to denote the above encoding, and
singleRail(dualRail(¬rk)) to recover the ¬rk formula based
on the original state variables.

This encoding makes it possible to interpret the complete
assignments produced by a SAT solver for the xp and xn

variables as partial assignments (i.e., assignments with don’t-
cares) for the original x variables. Assuming that |varsk | = m ,
a prime implicant consisting of l literals corresponds to
(i.e., covers) 2m−l states and can be found by checking the
satisfiability of the conjunction of dualRail(¬rk) with the
following pseudo-Boolean (cardinality) constraint [27]:∑︂

1⩽j⩽m

(xp
j + xn

j) ⩽ l (9)

The orbit enumeration procedure is depicted in Algorithm 1.
The procedure accepts a CNF representation of ¬rk and
returns the complete set of prime orbits. The primes are
found, in increasing literal size, by executing the SAT query

155

on line 5 for i = 1, · · · ,m using a single incremental SAT
solver instance based on an incremental encoding [28] of the
cardinality constraint (9). If satisfiable, the solution to the
query is an i -literal prime ρD in dualRail encoding. The
orbit of the singleRail encoding of this prime, computed by
applying the appropriate structural symmetry permutations to
its sort constants (line 7), is then added to primeOrbits (line
8) and eliminated from further consideration (line 9) for all
subsequent SAT queries. When the query is unsatisfiable (i.e.,
when there are no i -literal primes or all i -literal primes have
been found), i is incremented to find primes with i+1 literals.

B. Symmetry-Aware Set Covering

Our QSM algorithm is an adaptation of the standard textbook
branch-and-bound (BnB) logic minimization procedure that
uses an explicit matrix encoding of the covering constraints.
Specifically, it is based on the BCP procedure for unate and
binate covering in [29]. This procedure has three parts: a)
a reduction step that uses column and row dominance rules
to identify essential and covered (dominated) primes, b) a
termination check to accept or reject a complete solution by
comparing its cost to the best seen so far, and c) a depth-first
BnB search when the “reduced” covering constraints become
cyclic. The QSM algorithm closely follows this computational
flow but replaces the column and row dominance rules with
queries to an incremental SAT solver using an implicit CNF
encoding of the covering constraints.

To simplify the description of QSM, let’s assume
that the prime orbits are numbered from 1 to n , i.e.,
orbs(primes(¬rk)) = {ωk

1 , · · · , ωk
n}, and let [n] ≜

{1, 2, · · · ,n}. The covering constraints can now be captured
by the CNF formula

φk ≜
⋀︂

i ∈ [n]

(¬zi ∨ ¬ωk
i) (10)

which can be queried by an incremental SAT solver under
different assumptions involving the literals of the formula.
Specifically, the SAT query

SAT?[φk , assume chosenLiterals(φk)] (11)

checks the satisfiability of φk assuming that all literals in
chosenLiterals(φk) are set to True. These literals can include
the protocol state variables as well as the selection variables. In
particular, it is convenient to define the orbit selection formula

Z (sel) ≜ (
⋀︁

i ∈ sel

zi) ∧ (
⋀︁

i /∈ sel

¬zi) (12)

which can serve as an assumption in (11) to activate the prime
orbits specified by the set sel ⊆ [n] and to deactivate the
remaining orbits.

During the search we use sol ⊆ [n] to represent the set of
prime orbits in the current partial solution and pnd ⊆ [n] for
the prime orbits that are pending, i.e., the orbits that may or
may not be needed to complete the solution. sol becomes a
complete solution when pnd = ∅.

Identifying Essential Orbits: A pending prime orbit ωk
i is

essential if it covers some states that are not covered by the
union of a) the remaining pending orbits and b) the orbits in
the current partial solution; otherwise it is not essential. This
can be checked by the SAT query

isEssential(ωk
i) ≜ SAT?[¬(ωk

i →
⋁︁

j ∈ sol∪pnd\{i}
ωk
j)]

= SAT?[ωk
i ∧

⋀︁
j ∈ sol∪pnd\{i}

¬ωk
j]

Since ωk
i is a disjunction of primes, the formula in this query

is not in CNF. By symmetry, however, it is sufficient to check
the essentiality of any prime ρ ∈ ωk

i to conclude if the whole
orbit is or is not essential. This allows the above query to be
re-expressed as

isEssential(ωk
i) = SAT?[ρ(ωk

i) ∧
⋀︂

j ∈ sol∪pnd\{i}

¬ωk
j]

where, with a slight notational abuse, ρ(ωk
i) is used to assert

an arbitrary prime (a conjunction of protocol literals) from the
ωk
i orbit. The SAT query to check whether or not the ωk

i orbit
is essential can now be expressed as

isEssential(ωk
i) =

SAT?[φk , assume ρ(ωk
i) ∧ Z (sol ∪ pnd\{i})] (13)

Identifying Covered and Partially-Covered Orbits: The
coverage of a pending orbit is the number of states it covers
that are not already covered by the current partial solution and
can be found as the solution of this #SAT [30] query:

coverage(ωk
i) ≜ #SAT?[¬(ωk

i →
⋁︂

j ∈ sol

ωk
j)]

Exact coverage can, thus, be expressed as

coverage(ωk
i) =

#SAT?[φk , assume ρ(ωk
i) ∧ Z (sol)]

(14)

Coverage is used to remove completely covered orbits from
pnd (when coverage = 0) and to rank partially-covered
orbits for the branching step (when coverage > 0). Our
implementation uses an approximation of #SAT since the exact
number of solutions to (14) is not needed. The coverage
estimate of pending orbits is stored in an array cov .

The pseudo-code of QSM is shown in Algorithm 2. Initially,
pnd = [n], sol = ∅, the entries in the cov array are un-
initialized, and UB (the upper bound on the cost of the
solution) is set to 1 +

∑︁
i ∈ [n] qCost(ω

k
i).

At each invocation, QSM performs the following steps:

• Line 2: It updates the current covering requirements
(encoded by pnd , sol , and cov) by calling reduce to
identify essential and covered primes, if any.

• Lines 3-8: It checks if a complete solution has been found
and
– Lines 4-6: returns this solution and updates UB to its

cost if it is cheaper than the best seen so far.

156

Algorithm 2 Quantified Symmetric Minimization
1 procedure QSM(pnd , sol , cov ,UB)
2 (pnd , sol , cov) ← reduce(pnd , sol , cov)
3 if pnd = ∅ then
4 if qCost(sol) < UB then
5 UB ← qCost(sol)
6 return sol
7 else
8 return NOSOLUTION
9 LB ← qCost(sol)

10 if LB ≥ UB then
11 return NOSOLUTION
12 i ← chooseOrbit(pnd , cov)
13 Swith i ← QSM(pnd \ {i}, sol ∪ {i}, cov ,UB)
14 if qCost(Swith i) = LB then
15 return (Swith i)
16 Swithout i ← QSM(pnd \ {i}, sol , cov ,UB)
17 return BESTSOLUTION(Swith i , Swithout i)

18 procedure reduce(pnd , sol , cov)
19 (existEss, pnd , sol) ← addEssentials(pnd , sol)
20 (existCov , pnd , cov) ← removeCovered(pnd , sol , cov)
21 if existEss ∨ existCov then
22 (pnd , sol , cov) ← reduce(pnd , sol , cov)
23 return (pnd , sol , cov)

24 procedure addEssentials(pnd , sol)
25 essentials ← ∅
26 for each orbit ∈ pnd do
27 if isEssential(orbit , pnd , sol) then
28 essentials ← essentials ∪ {orbit}
29 sol ← sol ∪ essentials
30 pnd ← pnd \ essentials
31 return (|essentials| > 0, pnd , sol)

32 procedure removeCovered(pnd , sol , cov)
33 covered ← ∅
34 for each orbit ∈ pnd do
35 cov [orbit] ← coverage(orbit , sol)
36 if cov [orbit] = 0 then
37 covered ← covered ∪ {orbit}
38 pnd ← pnd \ covered
39 return (|covered | > 0, pnd , cov)

– Lines 7-8: returns “no solution” (i.e., backtracks) if the
cost is higher than the best seen so far.

• Lines 9-11: It sets the lower bound LB to be the cost of
the current partial solution and backtracks if that cost is
greater than the current upper bound.

• Line 12: It ranks the pending orbits by their estimated
coverage and chooses the orbit with the highest coverage
for the next branching decision breaking ties arbitrarily.
In addition, it ranks orbits that are not parameterized by
sort constants (i.e., they are independent of “k”) higher
than other orbits. The intuition behind this heuristic is
that such orbits are more likely to be in the minimum
solution since they are size- independent.

• Lines 13-17: It recursively calls itself to search for a
solution that includes the chosen orbit and returns that

QSM

NO

YES

Fig. 1: QSM Syntactic Fixed Point Convergence

solution if its cost is equal to the lower bound. Otherwise,
it recursively calls itself to search for a solution that
excludes the chosen orbit and returns the cheaper of the
two solutions.

The computational core of QSM is in the reduce, addEssen-
tials, and removeCovered procedures. The reduce procedure
repeatedly calls addEssentials and removeCovered until all
essential and covered orbits have been processed and pnd , sol ,
and cov updated. Finally, the addEssentials and removeCov-
ered) procedures implement the SAT queries corresponding
to (13) and (14).

IV. FROM BOUNDED TO UNBOUNDED MINIMIZATION

Applying the QSM algorithm to P1,P2, · · · generates a corre-
sponding sequence of minimum solutions4 r1min , r

2
min , · · · . An

interesting empirical observation is that this sequence reaches
a syntactic fixed point (Figure 1) at some value k⋆ defined as:

• rk
⋆

min =
⋀︂

1⩽i⩽l

Ψk⋆

i

• rk
⋆+1

min =
⋀︂

1⩽i⩽l

Ψk⋆+1
i

• ∀i ∈ [1, l] : prefix (Ψk⋆+1
i) = prefix (Ψk⋆

i)

• ∀i ∈ [1, l] : matrix (Ψk⋆+1
i) = matrix (Ψk⋆

i)

(15)

Another way of saying this is that the minimum clausal orbits
“converge” and that additional orbits that might be produced
at values of k larger than k⋆ become redundant and do not
introduce new behaviors beyond k⋆. This is reminiscent of
the cutoff [31], [32] and data saturation [20] phenomena
in the model checking literature and suggests that the finite
quantification can be replaced with unbounded quantification
yielding an exact minimum formula

rmin =
⋀︂

1⩽i⩽l

Ψi (16)

for the unbounded protocol P . Our contribution can be seen
as the culmination of these earlier efforts by showing that the
incorporation of minimization a) yields the natural quantified
forms of the rmin orbits and b) “explains” how saturation
happens.

V. EXPERIMENTAL EVALUATION

We evaluated QSM on a set of 17 protocols from [4], [5], [33].
This set includes fairly complex high-level descriptions of

4In practice, the initial base size usually starts at i > 1.

157

TABLE II: QSM Experimental Results†

Protocol Memory
MB

CPU Time, sec Number of
rmin

Orbits

Asseertions

Total BDD PI Gen qInf Cov vars rk cubes ¬rkPIs Orbits Human IC3PO

tla-consensus 59 9 4 0 4 0∗ 3 3 3 1 1 0 0
tla-tcommit 67 9 4 0 4 0 8 12 26 13 8 2 1
tla-twophase 67 7197 4 1 4 7188 17 29 252 134 ? 11 11
distai-ricart-agrawala 67 9 4 0 4 0∗ 10 4 10 6 4 2 2
i4-lock-server 67 17 8 1 8 1∗ 8 16 14 3 3 1 1
pyv-sharded-kv 104 58 22 10 17 10∗ 42 324 420 15 8 4 5
pyv-sharded-kv-no-lost-keys 106 68 22 15 18 14 42 324 422 16 9 1 1
ex-simple-decentralized-lock 67 18 8 1 8 1∗ 24 80 198 18 18 4 3
pyv-firewall 67 56 6 1 7 42 15 23 348 62 5 1 2
pyv-lockserv 67 9 4 0 4 0∗ 13 10 46 13 13 8 8
ex-lockserv-automaton 67 9 4 0 4 0∗ 13 10 46 13 13 1 8
ex-toy-consensus 108 29 14 2 12 2 27 138 510 19 4 2 2
ex-naive-consensus 67 21 9 2 8 2∗ 27 189 396 14 3 3 3
ex-simple-election 47056 3812 3773 2 11 27 27 220 849 55 7 2 3
pyv-toy-consensus-forall 67 31 13 3 13 3 23 1072 518 19 6 3 3
pyv-toy-consensus-epr 48912 3622 3607 1 11 3 24 94 534 35 6 3 3
pyv-consensus-epr 913 7401 4675 74 32 2621 72 1318 19818 743 16 6 5

† The memory and time statistics capture the runs of QSM from the initial finite size to the one larger than the cutoff size. The number of
variables, cubes, PIs, and Orbits are at the cutoff size.
∗For these protocols, rmin was found without any branch-and-bound search.

mutual-exclusion and consensus algorithms, including proto-
cols such as sharded key-value store, two-phase commit, asyn-
chronous lock server, Ricart-Agrawala, etc. Several studies [4],
[5], [18], [34]–[36] have indicated the challenges involved in
verifying these protocols.

We assessed the performance of each step in QSM and con-
trasted its derivation of rmin (which is inferred independently
of any protocol property) to human-written and automatically-
derived property-driven strengthening assertions. For each
protocol in Table II we made a sequence of QSM runs from
an initial base size to the converged k∗ cutoff size (details on
these sizes are shown in Table III) and report the cumulative
time and maximum memory usage for all these runs. The total
time for these runs is broken down into the following stages:

• BDD: the time to generate the DNF table (as a set of
cubes) of rk using BDD-based forward image computa-
tion.

• PI Gen: the time for the SAT-based procedure to enu-
merate the prime implicants of ¬rk and to partition them
into symmetry orbits.

• qInf: the time to perform quantifier inference on all prime
implicate orbits.

• Cov: the time for the SAT-based branch-and-bound set
covering minimization problem that yields rkmin .

The table also shows, at the cutoff size, the number of vari-
ables, cubes, prime implicants/implicates, and orbits. Column
“rmin Orbits” gives the number of (invariant) orbits in the final
unbounded formula rmin ; these formulas were independently
confirmed to be inductive using Ivy [18]. Note that rmin can
be instantiated for any arbitrary protocol size k and can be
independently confirmed to be logically-equivalent to the set of
reachable states of Pk . The final two columns give the number
of manually-written and automatically-derived strengthening
assertions using IC3PO [6], [37] for the protocol’s specified
safety property.

We can make the following observations about these results.

• Except for 4 cases, the total time for deriving rmin is less
than a couple of CPU minutes.

• For 8 protocols, rmin was found without any branch-and-
bound search (indicated with ∗ in the Cov column).

• Except for the tla-twophase protocol, the derivation of
rmin was completed and the solution was unique. The
minimization step timed out for tla-twophase. Interest-
ingly though, the complete set of orbits at sizes 2 and 3
were identical and found to be inductive. Thus, even in
this case the complete product was unique.

• In 3 cases, the BDD image computation had a large
memory footprint and dominated the total run time.

A preliminary analysis of these results identified the causes
for the observed computational bottlenecks. Specifically, the
current BDD front-end does not account for symmetry causing
a huge memory blow-up and the attendant increase in run
time. A natural solution would be to preserve the protocol’s
structural symmetry in the forward image computation in order
to produce a set of cube orbits, rather than individual cubes5,
for rk . The excessive run time of the covering step in tla-
twophase and pyv-consensus-epr was a direct consequence
of the large number of PIs and PI orbits and the failure of
the branching heuristic to identify good candidate orbits that
can guide the search to close-to-minimal initial solutions. We
noticed that many of the PI orbits in these, as well as other,
protocols are “similar” (involving the same literals) and can be
merged as disjoint sub-orbits into larger super orbits. As an
example, Table IV shows 5 sub-orbits from the ex-simple-
decentralized-lock protocol and their merger into a single
super orbit with a much smaller qCost . Identifying super orbits

5The current BDD front-end limited the set of protocols our prototype can
support.

158

TABLE III: Finite instance sizes from the initial base size to the converged cutoff size
Protocol Finite instance sizes † ‡

tla-consensus value = 2 ↦→ 3
tla-tcommit resource-manager = 2
tla-twophase resource-manager = 2
distai-ricart-agrawala node = 2
i4-lock-server client = 2 ↦→ 3, server = 1 ↦→ 2
pyv-sharded-kv key = 2, node = 2 ↦→ 3, value = 2 ↦→ 3
pyv-sharded-kv-no-lost-keys key = 2, node = 2 ↦→ 3, value = 2 ↦→ 3
ex-simple-decentralized-lock node = 2 ↦→ 4
pyv-firewall node = 2 ↦→ 3
pyv-lockserv node = 2 ↦→ 3
ex-lockserv-automaton node = 2 ↦→ 3
ex-toy-consensus node = 2 ↦→ 4, quorum = 1 ↦→ 4, value = 2 ↦→ 3
ex-naive-consensus node = 3 ↦→ 4, quorum = 3 ↦→ 4, value = 3
ex-simple-election acceptor = 2 ↦→ 3, proposer = 2 ↦→ 3, quorum = 1 ↦→ 3
pyv-toy-consensus-forall node = 2 ↦→ 4, quorum = 1 ↦→ 4, value = 2 ↦→ 3
pyv-toy-consensus-epr node = 2 ↦→ 3, quorum = 1 ↦→ 3, value = 2 ↦→ 3
pyv-consensus-epr node = 2 ↦→ 4, quorum = 1 ↦→ 4, value = 2 ↦→ 3

† s = x denotes sort s has both initial size and final cutoff size x
‡ s = x ↦→ y denotes sort s has initial size x and final cutoff size y

during the PI generation step will yield a much smaller number
of orbits for the subsequent cover minimization step.

These initial results provide strong support to our thesis that
the structural symmetries of a protocol enable the derivation
of a minimal conjunctive FOL formula for its reachable states.

VI. RELATED WORK

Notwithstanding the undecidability result of Apt and
Kozen [38], many efforts to automatically infer quantified
inductive invariants for distributed protocols have been re-
ported with the pace increasing in recent years [3]–[9]. All
these works, however, perform a property-dependent analysis
of the distributed protocol and aim to derive an inductive
invariant specific to a given safety property. In contrast, our
work attempts to derive an FOL encoding of the exact set of
reachable states of a distributed protocol, which can be utilized
to check the validity of any safety property.

Several manual or semi-automatic verification techniques
based on interactive theorem proving have been proposed for
deriving system-level proofs [18], [34], [39]–[43]. However,
unlike fully-automatic verification, all these methods require
a detailed understanding of the intricate inner workings of the
protocol and entail significant manual effort to guide proof
development.

Verification of parameterized systems using SMT solvers is
further explored in MCMT [44], Cubicle [45], and paraVer-
ifier [46]. Our work is closest in spirit to view abstraction,
proposed in [47], which computes the reachable set for finite

instances using forward reachability until cutoff is reached.
Our technique further builds on these works with the ability
to automatically derive a quantified FOL encoding of the set
of reachable states by utilizing a novel symmetry-aware SAT-
based logic minimization algorithm.

In the context of logic minimization, the implicit encoding
of the covering constraints in QSM is similar, at least in spirit
but not details, to the procedure in [48]. Finally, it is worth
noting, as an interesting historical fact, that McCluskey [16]
considered the incorporation of Boolean symmetry in his
tabular method for deriving the set of prime implicants.

VII. CONCLUSIONS AND FUTURE WORK

We proposed QSM, a novel forward-reachability algorithm that
combines the relationship between symmetry and quantifica-
tion in a SAT-based logic minimization procedure to derive
a compact quantified FOL formula rmin representing the set
of reachable states of a distributed protocol. We empirically
demonstrate the ability of our prototype to derive such quanti-
fied representations of the reachable states, independent of the
protocol size, on a restricted class of distributed protocols. The
derivation of rmin is property- independent, enables checking
the validity of any protocol safety property and compactly
summarizes all protocol behaviors for any size.

In its current form, our QSM prototype is limited to protocol
specifications based on unbounded symmetric sorts. Structural
symmetry is a manifestation of what can be called spatial reg-
ularity which leads to boundedness in the spatial dimension.

TABLE IV: Illustrating the merger of sub-orbits into a single super orbit for the ex-simple-decentralized-lock protocol

Sub-orbits

invariant [pi19] forall N1, N2, N3. (∼has lock(N1) | ∼message(N3, N2) | (N1 = N2) | (N1 = N3) | (N2 = N3))
invariant [pi25] forall N1, N2. (∼has lock(N1) | ∼message(N2, N2) | (N1 = N2))
invariant [pi31] forall N1, N2. (∼has lock(N1) | ∼message(N1, N2) | (N1 = N2))
invariant [pi37] forall N1, N2. (∼has lock(N1) | ∼message(N2, N1) | (N1 = N2))
invariant [pi43] forall N1. (∼has lock(N1) | ∼message(N1, N1))

Equivalent Super Orbit invariant [pi19 pi43] forall N, S, D. (∼has lock(N) | ∼message(S, D))

159

An important extension would be to derive rmin for protocols
that also include totally-ordered sorts. We do not foresee
conceptual difficulties for such an extension since totally-
ordered sorts introduce another type of regularity, namely tem-
poral regularity which leads to boundedness in the temporal
dimension, as explored in [49] and applied to automatically
prove the safety of Paxos [50] and Bakery [51] protocols.
Intuitively, while a totally-ordered sort causes the state space
of the protocol to expand without bound, that expansion must
be characterized by a repeating pattern since, otherwise, it
would not be captured by a finite set of quantifiers. Thus, as
observed in [49], we expect a cutoff/saturation phenomenon
conceptually similar to that exhibited by symmetry but dif-
ferent in implementation details. We also plan to augment
QSM with the MARCO MUS extractor [23] to automatically
derive subsets of the minimum orbits of rmin that can serve as
minimum strengthening assertions for given safety properties.

The experimental results strongly hint that the rmin formula
produced by QSM is unique. We conjecture that this must
follow from symmetry and the particular cost function used
in the set covering step. However, we do not have a formal
proof that this is always the case and we plan to develop
such a proof since solution uniqueness is critical for syntactic
convergence. More speculatively, the possibility that a unique
quantified formula for rmin can be mechanically derived, even
when it contains predicates that violate known decidable FOL
classes, suggests perhaps the existence of a new decidable
fragment of FOL.

Finally, the limited experiments we reported highlighted the
need for several optimizations to our current prototype imple-
mentation of QSM including the incorporation of symmetry
in BDD-based forward image computation, the identification
of super orbits in the PI enumeration step, and improving
the accuracy of coverage estimates during the branch-and-
bound search for the minimum cover. Specifically, one simple
modification of the #SAT query in (14) is to multiply its
answer by the number of primes in the orbit to get a more
accurate orbit coverage.

ACKNOWLEDGMENTS

This work was done in part while the authors were partici-
pating in a program at the Simons Institute for the Theory of
Computing. The research was funded in part by the Austrian
Science Fund (FWF) under project No. T-1306.

REFERENCES

[1] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of Model Checking. Springer, 2018, pp. 305–343.

[2] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[3] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham,
“Property-directed inference of universal invariants or proving their
absence,” J. ACM, vol. 64, no. 1, Mar. 2017. [Online]. Available:
https://doi.org/10.1145/3022187

[4] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and K. A.
Sakallah, “I4: Incremental Inference of Inductive Invariants forVeri-
fication of Distributed Protocols,” in The 27th ACM Symposium on
Operating Systems Principles (SOSP 2019), Huntsville, Ontario, Canada,
October 2019, pp. 370–384.

[5] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken, “First-order
quantified separators,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 703–717. [Online]. Available: https://doi.org/
10.1145/3385412.3386018

[6] A. Goel and K. A. Sakallah, “On Symmetry and Quantification: A
New Approach to Verify Distributed Protocols,” in 13th Annual NASA
Formal Methods Symposium (NFM 2021), Langley, Virginia, May 2021,
pp. 131–150. [Online]. Available: https://arxiv.org/abs/2103.14831

[7] T. Hance, M. Heule, R. Martins, and B. Parno, “Finding invariants
of distributed systems: It’s a small (enough) world after all,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 115–131. [Online].
Available: https://www.usenix.org/conference/nsdi21/presentation/hance

[8] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “Distai: Data-
driven automated invariant learning for distributed protocols,” in 15th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 21), 2021, pp. 405–421.

[9] J. Yao, R. Tao, R. Gu, and J. Nieh, “{DuoAI}: Fast, automated inference
of inductive invariants for verifying distributed protocols,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 485–501.

[10] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia and
A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518. [Online].
Available: https://doi.org/10.1007/978-3-540-24605-3 37

[11] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[12] J. B. Fraleigh, A First Course in Abstract Algebra, 6th ed. Reading,
Massachusetts: Addison Wesley Longman, 2000.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[14] W. V. Quine, “The problem of simplifying truth functions,” The Amer-
ican mathematical monthly, vol. 59, no. 8, pp. 521–531, 1952.

[15] ——, “A way to simplify truth functions,” The American mathematical
monthly, vol. 62, no. 9, pp. 627–631, 1955.

[16] E. J. McCluskey, “Detection of group invariance or total symmetry of
a boolean function,” The Bell System technical journal, vol. 35, no. 6,
pp. 1445–1453, 1956.

[17] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 3, pp.
872–923, 1994.

[18] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 614–630.

[19] P. Wolper, “Expressing interesting properties of programs in propo-
sitional temporal logic,” in Proceedings of the 13th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, 1986,
pp. 184–193.

[20] C. Norris IP and D. L. Dill, “Better verification through symmetry,”
Formal Methods in System Design, vol. 9, no. 1, pp. 41–75, Aug 1996.
[Online]. Available: https://doi.org/10.1007/BF00625968

[21] “A TLA+ specification of the Transaction Commit protocol,”
https://github.com/tlaplus/Examples/blob/master/specifications/
transaction commit/TCommit.tla.

[22] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM
Transactions on Database Systems (TODS), vol. 31, no. 1, pp. 133–160,
2006.

[23] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva, “Fast, flexible
mus enumeration,” Constraints, vol. 21, no. 2, pp. 223–250, 2016.

[24] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic Model Checking: 1020 States and Beyond,” in Proceedings.
Fifth Annual IEEE Symposium on Logic in Computer Science, 1990, pp.
428–439.

[25] V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Oliveira,
“Prime implicant computation using satisfiability algorithms,” in
9th International Conference on Tools with Artificial Intelligence,
ICTAI ’97, Newport Beach, CA, USA, November 3-8, 1997.
IEEE Computer Society, 1997, pp. 232–239. [Online]. Available:
https://doi.org/10.1109/TAI.1997.632261

160

www.SMT-LIB.org
https://doi.org/10.1145/3022187
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3385412.3386018
https://arxiv.org/abs/2103.14831
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/BF00625968
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TCommit.tla
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TCommit.tla
https://doi.org/10.1109/TAI.1997.632261

[26] S. Jabbour, J. Marques-Silva, L. Sais, and Y. Salhi, “Enumerating
prime implicants of propositional formulae in conjunctive normal
form,” in Logics in Artificial Intelligence - 14th European Conference,
JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014.
Proceedings, ser. Lecture Notes in Computer Science, E. Fermé and
J. Leite, Eds., vol. 8761. Springer, 2014, pp. 152–165. [Online].
Available: https://doi.org/10.1007/978-3-319-11558-0 11

[27] R. Martins, S. Joshi, V. M. Manquinho, and I. Lynce, “Incremental
cardinality constraints for maxsat,” in Principles and Practice
of Constraint Programming - 20th International Conference, CP
2014, Lyon, France, September 8-12, 2014. Proceedings, ser.
Lecture Notes in Computer Science, B. O’Sullivan, Ed., vol.
8656. Springer, 2014, pp. 531–548. [Online]. Available: https:
//doi.org/10.1007/978-3-319-10428-7 39

[28] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental cardi-
nality constraints for maxsat,” in Principles and Practice of Constraint
Programming: 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings 20. Springer, 2014, pp. 531–548.

[29] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algo-
rithms. Springer Science & Business Media, 2007.

[30] C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting,” in
Handbook of satisfiability. IOS press, 2021, pp. 993–1014.

[31] A. Pnueli, S. Ruah, and L. Zuck, “Automatic deductive verification
with invisible invariants,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2001, pp. 82–97.

[32] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck, “Parameterized veri-
fication with automatically computed inductive assertions,” in Computer
Aided Verification, G. Berry, H. Comon, and A. Finkel, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 221–234.

[33] “A collection of distributed protocol verification problems,” https://
github.com/aman-goel/ivybench.

[34] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “Ironfleet: proving practical distributed
systems correct,” in Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 2015, pp. 1–17.

[35] Y. M. Feldman, J. R. Wilcox, S. Shoham, and M. Sagiv, “Inferring
inductive invariants from phase structures,” in International Conference
on Computer Aided Verification. Springer, 2019, pp. 405–425.

[36] I. Berkovits, M. Lazić, G. Losa, O. Padon, and S. Shoham, “Verification
of threshold-based distributed algorithms by decomposition to decidable
logics,” in International Conference on Computer Aided Verification.
Springer, 2019, pp. 245–266.

[37] A. Goel and K. A. Sakallah, “IC3PO: IC3 for Proving Protocol Proper-
ties,” https://github.com/aman-goel/ic3po.

[38] K. R. Apt and D. Kozen, “Limits for automatic verification of finite-
state concurrent systems,” Inf. Process. Lett., vol. 22, no. 6, pp. 307–309,
1986.

[39] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype verifi-
cation system,” in International Conference on Automated Deduction.
Springer, 1992, pp. 748–752.

[40] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety
properties with the tla+ proof system,” in International Joint Conference
on Automated Reasoning. Springer, 2010, pp. 142–148.

[41] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D.
Ernst, and T. Anderson, “Verdi: A framework for implementing
and formally verifying distributed systems,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’15. New York, NY, USA: ACM,
2015, pp. 357–368. [Online]. Available: http://doi.acm.org/10.1145/
2737924.2737958

[42] J. Hoenicke, R. Majumdar, and A. Podelski, “Thread modularity at many
levels: a pearl in compositional verification,” ACM SIGPLAN Notices,
vol. 52, no. 1, pp. 473–485, 2017.

[43] K. v. Gleissenthall, R. G. Kıcı, A. Bakst, D. Stefan, and R. Jhala, “Pre-
tend synchrony: synchronous verification of asynchronous distributed
programs,” Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 1–30, 2019.

[44] S. Ranise and S. Ghilardi, “Backward reachability of array-based
systems by smt solving: Termination and invariant synthesis,” Logical
Methods in Computer Science, vol. 6, 2010.

[45] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaı̈di, “Cubicle:
A parallel smt-based model checker for parameterized systems,” in

International Conference on Computer Aided Verification. Springer,
2012, pp. 718–724.

[46] Y. Li, J. Pang, Y. Lv, D. Fan, S. Cao, and K. Duan, “Paraverifier:
An automatic framework for proving parameterized cache coherence
protocols,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2015, pp. 207–213.

[47] P. Abdulla, F. Haziza, and L. Holı́k, “Parameterized verification through
view abstraction,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 18, no. 5, pp. 495–516, 2016.

[48] M. J. Ghazala, “Irredundant disjunctive and conjunctive forms of a
boolean function,” IBM J. Res. Dev., vol. 1, no. 2, pp. 171–176, 1957.
[Online]. Available: https://doi.org/10.1147/rd.12.0171

[49] A. Goel and K. A. Sakallah, “Regularity and Quantification: A New
Approach to Verify Distributed Protocols,” Innovations in Systems and
Software Engineering (ISSE), pp. 1–19, September 2022.

[50] ——, “Towards an Automatic Proof of Lamport’s Paxos,” in Formal
Methods in Computer-Aided Design (FMCAD), R. Piskac and M. W.
Whalen, Eds., New Haven, Connecticut, October 2021, pp. 112–122.

[51] A. Goel, S. Merz, and K. A. Sakallah, “Towards an automatic proof
of the bakery algorithm,” in Formal Techniques for Distributed Objects,
Components, and Systems, M. Huisman and A. Ravara, Eds. Cham:
Springer Nature Switzerland, 2023, pp. 21–28.

161

https://doi.org/10.1007/978-3-319-11558-0_11
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-10428-7_39
https://github.com/aman-goel/ivybench
https://github.com/aman-goel/ivybench
https://github.com/aman-goel/ic3po
http://doi.acm.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958
https://doi.org/10.1147/rd.12.0171

	Introduction
	Preliminaries and Context
	Exact Two-Level Minimization
	The Quine-McCluskey Algorithm
	Distributed Protocols
	An Example rmin Formula

	QSM: SAT-Based Quantified Symmetric Minimization
	Symmetry-Aware Enumeration of Prime Implicant Orbits
	Symmetry-Aware Set Covering

	From Bounded to Unbounded Minimization
	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

